BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

99 related articles for article (PubMed ID: 12950167)

  • 1. Domains of apoE required for binding to apoE receptor 2 and to phospholipids: implications for the functions of apoE in the brain.
    Li X; Kypreos K; Zanni EE; Zannis V
    Biochemistry; 2003 Sep; 42(35):10406-17. PubMed ID: 12950167
    [TBL] [Abstract][Full Text] [Related]  

  • 2. SR-BI mediates cholesterol efflux via its interactions with lipid-bound ApoE. Structural mutations in SR-BI diminish cholesterol efflux.
    Chroni A; Nieland TJ; Kypreos KE; Krieger M; Zannis VI
    Biochemistry; 2005 Oct; 44(39):13132-43. PubMed ID: 16185081
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reconstituted discoidal ApoE-phospholipid particles are ligands for the scavenger receptor BI. The amino-terminal 1-165 domain of ApoE suffices for receptor binding.
    Li X; Kan HY; Lavrentiadou S; Krieger M; Zannis V
    J Biol Chem; 2002 Jun; 277(24):21149-57. PubMed ID: 11861652
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Contribution of cysteine 158, the glycosylation site threonine 194, the amino- and carboxy-terminal domains of apolipoprotein E in the binding to amyloid peptide beta (1-40).
    Aleshkov SB; Li X; Lavrentiadou SN; Zannis VI
    Biochemistry; 1999 Jul; 38(28):8918-25. PubMed ID: 10413465
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Regulation of ApoE receptor proteolysis by ligand binding.
    Hoe HS; Rebeck GW
    Brain Res Mol Brain Res; 2005 Jun; 137(1-2):31-9. PubMed ID: 15950758
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Interaction of nascent ApoE2, ApoE3, and ApoE4 isoforms expressed in mammalian cells with amyloid peptide beta (1-40). Relevance to Alzheimer's disease.
    Aleshkov S; Abraham CR; Zannis VI
    Biochemistry; 1997 Aug; 36(34):10571-80. PubMed ID: 9265639
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A two-module region of the low-density lipoprotein receptor sufficient for formation of complexes with apolipoprotein E ligands.
    Fisher C; Abdul-Aziz D; Blacklow SC
    Biochemistry; 2004 Feb; 43(4):1037-44. PubMed ID: 14744149
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Influence of Isoforms and Carboxyl-Terminal Truncations on the Capacity of Apolipoprotein E To Associate with and Activate Phospholipid Transfer Protein.
    Dafnis I; Metso J; Zannis VI; Jauhiainen M; Chroni A
    Biochemistry; 2015 Sep; 54(38):5856-66. PubMed ID: 26337529
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Splicing variations in the ligand-binding domain of ApoER2 results in functional differences in the binding properties to Reelin.
    Hibi T; Mizutani M; Baba A; Hattori M
    Neurosci Res; 2009 Apr; 63(4):251-8. PubMed ID: 19167437
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Implication of apoE isoforms in cholesterol metabolism by primary rat hippocampal neurons and astrocytes.
    Rapp A; Gmeiner B; Hüttinger M
    Biochimie; 2006 May; 88(5):473-83. PubMed ID: 16376010
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Apolipoprotein E isoforms and lipoprotein metabolism.
    Phillips MC
    IUBMB Life; 2014 Sep; 66(9):616-23. PubMed ID: 25328986
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hyperlipidemia in APOE2 transgenic mice is ameliorated by a truncated apoE variant lacking the C-terminal domain.
    Gerritsen G; Kypreos KE; van der Zee A; Teusink B; Zannis VI; Havekes LM; van Dijk KW
    J Lipid Res; 2003 Feb; 44(2):408-14. PubMed ID: 12576523
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Molecular mechanisms of type III hyperlipoproteinemia: The contribution of the carboxy-terminal domain of ApoE can account for the dyslipidemia that is associated with the E2/E2 phenotype.
    Kypreos KE; Li X; van Dijk KW; Havekes LM; Zannis VI
    Biochemistry; 2003 Aug; 42(33):9841-53. PubMed ID: 12924933
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Functional characterization of apolipoprotein E isoforms overexpressed in Escherichia coli.
    Morrow JA; Arnold KS; Weisgraber KH
    Protein Expr Purif; 1999 Jul; 16(2):224-30. PubMed ID: 10419818
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mechanisms linking apolipoprotein E isoforms with cardiovascular and neurological diseases.
    Huang Y
    Curr Opin Lipidol; 2010 Aug; 21(4):337-45. PubMed ID: 20531185
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of apoE on neuronal signaling and APP processing in rodent brain.
    Hoe HS; Pocivavsek A; Dai H; Chakraborty G; Harris DC; Rebeck GW
    Brain Res; 2006 Sep; 1112(1):70-9. PubMed ID: 16905123
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The structure of human apolipoprotein E2, E3 and E4 in solution. 2. Multidomain organization correlates with the stability of apoE structure.
    Clément-Collin V; Barbier A; Dergunov AD; Visvikis A; Siest G; Desmadril M; Takahashi M; Aggerbeck LP
    Biophys Chem; 2006 Jan; 119(2):170-85. PubMed ID: 16125836
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of polymorphism on the lipid interaction of human apolipoprotein E.
    Saito H; Dhanasekaran P; Baldwin F; Weisgraber KH; Phillips MC; Lund-Katz S
    J Biol Chem; 2003 Oct; 278(42):40723-9. PubMed ID: 12917433
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Replacement of helix 1' enhances the lipid binding activity of apoE3 N-terminal domain.
    Redmond KA; Murphy C; Narayanaswami V; Kiss RS; Hauser P; Guigard E; Kay CM; Ryan RO
    FEBS J; 2006 Feb; 273(3):558-67. PubMed ID: 16420479
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A monomeric human apolipoprotein E carboxyl-terminal domain.
    Fan D; Li Q; Korando L; Jerome WG; Wang J
    Biochemistry; 2004 May; 43(17):5055-64. PubMed ID: 15109264
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.