These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
449 related articles for article (PubMed ID: 12950227)
1. Carrier-facilitated bulk liquid membrane transport of iron(III)-siderophore complexes utilizing first coordination sphere recognition. Wirgau JI; Crumbliss AL Inorg Chem; 2003 Sep; 42(18):5762-70. PubMed ID: 12950227 [TBL] [Abstract][Full Text] [Related]
2. Ternary complex formation facilitates a redox mechanism for iron release from a siderophore. Mies KA; Wirgau JI; Crumbliss AL Biometals; 2006 Apr; 19(2):115-26. PubMed ID: 16718598 [TBL] [Abstract][Full Text] [Related]
4. Synthesis, solution behavior, thermal stability, and biological activity of an Fe(III) complex of an artificial siderophore with intramolecular hydrogen bonding networks. Matsumoto K; Ozawa T; Jitsukawa K; Masuda H Inorg Chem; 2004 Dec; 43(26):8538-46. PubMed ID: 15606204 [TBL] [Abstract][Full Text] [Related]
5. Iron chelation properties of an extracellular siderophore exochelin MN. Dhungana S; Miller MJ; Dong L; Ratledge C; Crumbliss AL J Am Chem Soc; 2003 Jun; 125(25):7654-63. PubMed ID: 12812507 [TBL] [Abstract][Full Text] [Related]
6. Iron(III) complexes of sterically hindered tetradentate monophenolate ligands as functional models for catechol 1,2-dioxygenases: the role of ligand stereoelectronic properties. Velusamy M; Mayilmurugan R; Palaniandavar M Inorg Chem; 2004 Oct; 43(20):6284-93. PubMed ID: 15446874 [TBL] [Abstract][Full Text] [Related]
7. Ferrioxamine B analogues: targeting the FoxA uptake system in the pathogenic Yersinia enterocolitica. Kornreich-Leshem H; Ziv C; Gumienna-Kontecka E; Arad-Yellin R; Chen Y; Elhabiri M; Albrecht-Gary AM; Hadar Y; Shanzer A J Am Chem Soc; 2005 Feb; 127(4):1137-45. PubMed ID: 15669853 [TBL] [Abstract][Full Text] [Related]
9. Iron chelation properties of an extracellular siderophore exochelin MS. Dhungana S; Ratledge C; Crumbliss AL Inorg Chem; 2004 Oct; 43(20):6274-83. PubMed ID: 15446873 [TBL] [Abstract][Full Text] [Related]
10. Iron(III) complexes of tridentate 3N ligands as functional models for catechol dioxygenases: the role of ligand N-alkyl substitution and solvent on reaction rate and product selectivity. Visvaganesan K; Mayilmurugan R; Suresh E; Palaniandavar M Inorg Chem; 2007 Nov; 46(24):10294-306. PubMed ID: 17958355 [TBL] [Abstract][Full Text] [Related]
11. Thermo-FTIR spectroscopic study of the siderophore ferrioxamine B: spectral analysis and stereochemical implications of iron chelation, pH, and temperature. Siebner-Freibach H; Yariv S; Lapides Y; Hadar Y; Chen Y J Agric Food Chem; 2005 May; 53(9):3434-43. PubMed ID: 15853384 [TBL] [Abstract][Full Text] [Related]
12. Novel iron(III) complexes of sterically hindered 4N ligands: regioselectivity in biomimetic extradiol cleavage of catechols. Mayilmurugan R; Stoeckli-Evans H; Palaniandavar M Inorg Chem; 2008 Aug; 47(15):6645-58. PubMed ID: 18597419 [TBL] [Abstract][Full Text] [Related]
13. Novel trihydroxamate-containing peptides: design, synthesis, and metal coordination. Ye Y; Liu M; Kao JL; Marshall GR Biopolymers; 2006; 84(5):472-89. PubMed ID: 16705688 [TBL] [Abstract][Full Text] [Related]
14. Kinetics and mechanism of iron(III) dissociation from the dihydroxamate siderophores alcaligin and rhodotorulic acid. Boukhalfa H; Brickman TJ; Armstrong SK; Crumbliss AL Inorg Chem; 2000 Dec; 39(25):5591-602. PubMed ID: 11151360 [TBL] [Abstract][Full Text] [Related]
15. Iron(III) complexes of tripodal monophenolate ligands as models for non-heme catechol dioxygenase enzymes: correlation of dioxygenase activity with ligand stereoelectronic properties. Mayilmurugan R; Visvaganesan K; Suresh E; Palaniandavar M Inorg Chem; 2009 Sep; 48(18):8771-83. PubMed ID: 19694480 [TBL] [Abstract][Full Text] [Related]
16. Crystal and molecular structures of ionophore-siderophore host-guest supramolecular assemblies relevant to molecular recognition. Dhungana S; White PS; Crumbliss AL J Am Chem Soc; 2003 Dec; 125(48):14760-7. PubMed ID: 14640651 [TBL] [Abstract][Full Text] [Related]
17. Design of iron chelators: syntheses and iron (III) complexing abilities of tripodal tris-bidentate ligands. d'Hardemare Adu M; Torelli S; Serratrice G; Pierre JL Biometals; 2006 Aug; 19(4):349-66. PubMed ID: 16841245 [TBL] [Abstract][Full Text] [Related]
18. Synthesis, siderophore activity and iron(III) chelation chemistry of a novel mono-hydroxamate, bis-catecholate siderophore mimic: N(alpha),-N(epsilon)-Bis[2,3-dihydroxybenzoyl]-l-lysyl-(gamma-N-methyl-N-hydroxyamido)-L-glutamic acid. Mies KA; Gebhardt P; Möllmann U; Crumbliss AL J Inorg Biochem; 2008 Apr; 102(4):850-61. PubMed ID: 18272225 [TBL] [Abstract][Full Text] [Related]
19. The kinetics of dimethylhydroxypyridinone interactions with iron(iii) and the catalysis of iron(iii) ligand exchange reactions: implications for bacterial iron transport and combination chelation therapies. Harrington JM; Mysore MM; Crumbliss AL Dalton Trans; 2018 May; 47(20):6954-6964. PubMed ID: 29721567 [TBL] [Abstract][Full Text] [Related]
20. Synthesis, structure, spectra and reactivity of iron(III) complexes of facially coordinating and sterically hindering 3N ligands as models for catechol dioxygenases. Sundaravel K; Dhanalakshmi T; Suresh E; Palaniandavar M Dalton Trans; 2008 Dec; (48):7012-25. PubMed ID: 19050788 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]