BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 12950275)

  • 1. Signals from primary mesenchyme cells regulate endoderm differentiation in the sea urchin embryo.
    Hamada M; Kiyomoto M
    Dev Growth Differ; 2003 Aug; 45(4):339-50. PubMed ID: 12950275
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mesodermal cell interactions in the sea urchin embryo: properties of skeletogenic secondary mesenchyme cells.
    Ettensohn CA; Ruffins SW
    Development; 1993 Apr; 117(4):1275-85. PubMed ID: 8404530
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Micromere descendants at the blastula stage are involved in normal archenteron formation in sea urchin embryos.
    Ishizuka Y; Minokawa T; Amemiya S
    Dev Genes Evol; 2001 Feb; 211(2):83-8. PubMed ID: 11455418
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cell interactions and mesodermal cell fates in the sea urchin embryo.
    Ettensohn CA
    Dev Suppl; 1992; ():43-51. PubMed ID: 1299367
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The control of foxN2/3 expression in sea urchin embryos and its function in the skeletogenic gene regulatory network.
    Rho HK; McClay DR
    Development; 2011 Mar; 138(5):937-45. PubMed ID: 21303847
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nuclear beta-catenin-dependent Wnt8 signaling in vegetal cells of the early sea urchin embryo regulates gastrulation and differentiation of endoderm and mesodermal cell lineages.
    Wikramanayake AH; Peterson R; Chen J; Huang L; Bince JM; McClay DR; Klein WH
    Genesis; 2004 Jul; 39(3):194-205. PubMed ID: 15282746
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Activation of pmar1 controls specification of micromeres in the sea urchin embryo.
    Oliveri P; Davidson EH; McClay DR
    Dev Biol; 2003 Jun; 258(1):32-43. PubMed ID: 12781680
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Role of the ERK-mediated signaling pathway in mesenchyme formation and differentiation in the sea urchin embryo.
    Fernandez-Serra M; Consales C; Livigni A; Arnone MI
    Dev Biol; 2004 Apr; 268(2):384-402. PubMed ID: 15063175
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nuclear beta-catenin is required to specify vegetal cell fates in the sea urchin embryo.
    Logan CY; Miller JR; Ferkowicz MJ; McClay DR
    Development; 1999 Jan; 126(2):345-57. PubMed ID: 9847248
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Unequal divisions at the third cleavage increase the number of primary mesenchyme cells in sea urchin embryos.
    Kominami T; Takaichi M
    Dev Growth Differ; 1998 Oct; 40(5):545-53. PubMed ID: 9783480
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nodal and BMP2/4 pattern the mesoderm and endoderm during development of the sea urchin embryo.
    Duboc V; Lapraz F; Saudemont A; Bessodes N; Mekpoh F; Haillot E; Quirin M; Lepage T
    Development; 2010 Jan; 137(2):223-35. PubMed ID: 20040489
    [TBL] [Abstract][Full Text] [Related]  

  • 12. HpEts, an ets-related transcription factor implicated in primary mesenchyme cell differentiation in the sea urchin embryo.
    Kurokawa D; Kitajima T; Mitsunaga-Nakatsubo K; Amemiya S; Shimada H; Akasaka K
    Mech Dev; 1999 Jan; 80(1):41-52. PubMed ID: 10096062
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Endoderm differentiation in vitro identifies a transitional period for endoderm ontogeny in the sea urchin embryo.
    Chen SW; Wessel GM
    Dev Biol; 1996 Apr; 175(1):57-65. PubMed ID: 8608869
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The Snail repressor is required for PMC ingression in the sea urchin embryo.
    Wu SY; McClay DR
    Development; 2007 Mar; 134(6):1061-70. PubMed ID: 17287249
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Skeletogenic potential of induced secondary mesenchyme cells derived from the presumptive ectoderm in echinoid embryos.
    Minokawa T; Hamaguchi Y; Amemiya S
    Dev Genes Evol; 1997 Mar; 206(7):472-476. PubMed ID: 27747390
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Archenteron precursor cells can organize secondary axial structures in the sea urchin embryo.
    Benink H; Wray G; Hardin J
    Development; 1997 Sep; 124(18):3461-70. PubMed ID: 9342039
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Timing of the potential of micromere-descendants in echinoid embryos to induce endoderm differentiation of mesomere-descendants.
    Minokawa T; Amemiya S
    Dev Growth Differ; 1999 Oct; 41(5):535-47. PubMed ID: 10545026
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Disruption of primary mesenchyme cell patterning by misregulated ectodermal expression of SpMsx in sea urchin embryos.
    Tan H; Ransick A; Wu H; Dobias S; Liu YH; Maxson R
    Dev Biol; 1998 Sep; 201(2):230-46. PubMed ID: 9740661
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The role of Brachyury (T) during gastrulation movements in the sea urchin Lytechinus variegatus.
    Gross JM; McClay DR
    Dev Biol; 2001 Nov; 239(1):132-47. PubMed ID: 11784024
    [TBL] [Abstract][Full Text] [Related]  

  • 20. LvNotch signaling mediates secondary mesenchyme specification in the sea urchin embryo.
    Sherwood DR; McClay DR
    Development; 1999 Apr; 126(8):1703-13. PubMed ID: 10079232
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.