These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

290 related articles for article (PubMed ID: 12950917)

  • 1. TPR-mediated interaction of RapC with ComA inhibits response regulator-DNA binding for competence development in Bacillus subtilis.
    Core L; Perego M
    Mol Microbiol; 2003 Sep; 49(6):1509-22. PubMed ID: 12950917
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bacillus subtilis RapA phosphatase domain interaction with its substrate, phosphorylated Spo0F, and its inhibitor, the PhrA peptide.
    Diaz AR; Core LJ; Jiang M; Morelli M; Chiang CH; Szurmant H; Perego M
    J Bacteriol; 2012 Mar; 194(6):1378-88. PubMed ID: 22267516
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Synergistic regulation of competence development in Bacillus subtilis by two Rap-Phr systems.
    Bongiorni C; Ishikawa S; Stephenson S; Ogasawara N; Perego M
    J Bacteriol; 2005 Jul; 187(13):4353-61. PubMed ID: 15968044
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Binding of response regulator DegU to the aprE promoter is inhibited by RapG, which is counteracted by extracellular PhrG in Bacillus subtilis.
    Ogura M; Shimane K; Asai K; Ogasawara N; Tanaka T
    Mol Microbiol; 2003 Sep; 49(6):1685-97. PubMed ID: 12950930
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An autoregulatory circuit affecting peptide signaling in Bacillus subtilis.
    Lazazzera BA; Kurtser IG; McQuade RS; Grossman AD
    J Bacteriol; 1999 Sep; 181(17):5193-200. PubMed ID: 10464187
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Purification and characterization of an extracellular peptide factor that affects two different developmental pathways in Bacillus subtilis.
    Solomon JM; Lazazzera BA; Grossman AD
    Genes Dev; 1996 Aug; 10(16):2014-24. PubMed ID: 8769645
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Molecular analysis of Phr peptide processing in Bacillus subtilis.
    Stephenson S; Mueller C; Jiang M; Perego M
    J Bacteriol; 2003 Aug; 185(16):4861-71. PubMed ID: 12897006
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Global regulatory systems operating in Bacilysin biosynthesis in Bacillus subtilis.
    Köroğlu TE; Oğülür I; Mutlu S; Yazgan-Karataş A; Ozcengiz G
    J Mol Microbiol Biotechnol; 2011; 20(3):144-55. PubMed ID: 21709425
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Three non-aspartate amino acid mutations in the ComA Response regulator receiver motif severely decrease surfactin production, competence development and spore formation in Bacillus subtilis.
    Wang X; Luo C; Liu Y; Nie Y; Liu Y; Zhang R; Chen Z
    J Microbiol Biotechnol; 2010 Feb; 20(2):301-10. PubMed ID: 20208433
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A degenerate tripartite DNA-binding site required for activation of ComA-dependent quorum response gene expression in Bacillus subtilis.
    Griffith KL; Grossman AD
    J Mol Biol; 2008 Aug; 381(2):261-75. PubMed ID: 18585392
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bacillus subtilis rapD, a direct target of transcription repression by RghR, negatively regulates srfA expression.
    Ogura M; Fujita Y
    FEMS Microbiol Lett; 2007 Mar; 268(1):73-80. PubMed ID: 17227471
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Activation of the Bacillus subtilis global regulator CodY by direct interaction with branched-chain amino acids.
    Shivers RP; Sonenshein AL
    Mol Microbiol; 2004 Jul; 53(2):599-611. PubMed ID: 15228537
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Altered srf expression in Bacillus subtilis resulting from changes in culture pH is dependent on the Spo0K oligopeptide permease and the ComQX system of extracellular control.
    Cosby WM; Vollenbroich D; Lee OH; Zuber P
    J Bacteriol; 1998 Mar; 180(6):1438-45. PubMed ID: 9515911
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transcriptional regulation of Bacillus subtilis glucose starvation-inducible genes: control of gsiA by the ComP-ComA signal transduction system.
    Mueller JP; Bukusoglu G; Sonenshein AL
    J Bacteriol; 1992 Jul; 174(13):4361-73. PubMed ID: 1378051
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identification of ligands affecting the activity of the transcriptional repressor CcpN from Bacillus subtilis.
    Licht A; Golbik R; Brantl S
    J Mol Biol; 2008 Jun; 380(1):17-30. PubMed ID: 18511073
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identification of genes required for different stages of dendritic swarming in Bacillus subtilis, with a novel role for phrC.
    Hamze K; Julkowska D; Autret S; Hinc K; Nagorska K; Sekowska A; Holland IB; Séror SJ
    Microbiology (Reading); 2009 Feb; 155(Pt 2):398-412. PubMed ID: 19202088
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Functional analysis of the stability determinant AlfB of pBET131, a miniplasmid derivative of bacillus subtilis (natto) plasmid pLS32.
    Tanaka T
    J Bacteriol; 2010 Mar; 192(5):1221-30. PubMed ID: 20023009
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Regulators of the Bacillus subtilis cydABCD operon: identification of a negative regulator, CcpA, and a positive regulator, ResD.
    Puri-Taneja A; Schau M; Chen Y; Hulett FM
    J Bacteriol; 2007 May; 189(9):3348-58. PubMed ID: 17322317
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structural basis of response regulator inhibition by a bacterial anti-activator protein.
    Baker MD; Neiditch MB
    PLoS Biol; 2011 Dec; 9(12):e1001226. PubMed ID: 22215984
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transcription initiation region of the srfA operon, which is controlled by the comP-comA signal transduction system in Bacillus subtilis.
    Nakano MM; Xia LA; Zuber P
    J Bacteriol; 1991 Sep; 173(17):5487-93. PubMed ID: 1715856
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.