These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

377 related articles for article (PubMed ID: 12950922)

  • 1. Genome-based analysis of virulence genes in a non-biofilm-forming Staphylococcus epidermidis strain (ATCC 12228).
    Zhang YQ; Ren SX; Li HL; Wang YX; Fu G; Yang J; Qin ZQ; Miao YG; Wang WY; Chen RS; Shen Y; Chen Z; Yuan ZH; Zhao GP; Qu D; Danchin A; Wen YM
    Mol Microbiol; 2003 Sep; 49(6):1577-93. PubMed ID: 12950922
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A novel mechanism of phase variation of virulence in Staphylococcus epidermidis: evidence for control of the polysaccharide intercellular adhesin synthesis by alternating insertion and excision of the insertion sequence element IS256.
    Ziebuhr W; Krimmer V; Rachid S; Lössner I; Götz F; Hacker J
    Mol Microbiol; 1999 Apr; 32(2):345-56. PubMed ID: 10231490
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Strong biofilm production but not adhesion virulence factors can discriminate between invasive and commensal Staphylococcus epidermidis strains.
    Mekni MA; Bouchami O; Achour W; Ben Hassen A
    APMIS; 2012 Aug; 120(8):605-11. PubMed ID: 22779682
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Conversion of Staphylococcus epidermidis strains from commensal to invasive by expression of the ica locus encoding production of biofilm exopolysaccharide.
    Li H; Xu L; Wang J; Wen Y; Vuong C; Otto M; Gao Q
    Infect Immun; 2005 May; 73(5):3188-91. PubMed ID: 15845531
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bacterial insertion sequence IS256 as a potential molecular marker to discriminate invasive strains from commensal strains of Staphylococcus epidermidis.
    Gu J; Li H; Li M; Vuong C; Otto M; Wen Y; Gao Q
    J Hosp Infect; 2005 Dec; 61(4):342-8. PubMed ID: 16242209
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Methicillin resistance and virulence genes in invasive and nasal Staphylococcus epidermidis isolates from neonates.
    Salgueiro VC; Iorio NL; Ferreira MC; Chamon RC; Dos Santos KR
    BMC Microbiol; 2017 Jan; 17(1):15. PubMed ID: 28086793
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Detection of virulence-associated genes not useful for discriminating between invasive and commensal Staphylococcus epidermidis strains from a bone marrow transplant unit.
    Rohde H; Kalitzky M; Kröger N; Scherpe S; Horstkotte MA; Knobloch JK; Zander AR; Mack D
    J Clin Microbiol; 2004 Dec; 42(12):5614-9. PubMed ID: 15583290
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biofilm formation, icaADBC transcription, and polysaccharide intercellular adhesin synthesis by staphylococci in a device-related infection model.
    Fluckiger U; Ulrich M; Steinhuber A; Döring G; Mack D; Landmann R; Goerke C; Wolz C
    Infect Immun; 2005 Mar; 73(3):1811-9. PubMed ID: 15731082
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identification of three essential regulatory gene loci governing expression of Staphylococcus epidermidis polysaccharide intercellular adhesin and biofilm formation.
    Mack D; Rohde H; Dobinsky S; Riedewald J; Nedelmann M; Knobloch JK; Elsner HA; Feucht HH
    Infect Immun; 2000 Jul; 68(7):3799-807. PubMed ID: 10858187
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Insights on evolution of virulence and resistance from the complete genome analysis of an early methicillin-resistant Staphylococcus aureus strain and a biofilm-producing methicillin-resistant Staphylococcus epidermidis strain.
    Gill SR; Fouts DE; Archer GL; Mongodin EF; Deboy RT; Ravel J; Paulsen IT; Kolonay JF; Brinkac L; Beanan M; Dodson RJ; Daugherty SC; Madupu R; Angiuoli SV; Durkin AS; Haft DH; Vamathevan J; Khouri H; Utterback T; Lee C; Dimitrov G; Jiang L; Qin H; Weidman J; Tran K; Kang K; Hance IR; Nelson KE; Fraser CM
    J Bacteriol; 2005 Apr; 187(7):2426-38. PubMed ID: 15774886
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enhanced pathogenicity of biofilm-negative Staphylococcus epidermidis isolated from platelet preparations.
    Hodgson SD; Greco-Stewart V; Jimenez CS; Sifri CD; Brassinga AK; Ramirez-Arcos S
    Transfusion; 2014 Feb; 54(2):461-70. PubMed ID: 23795974
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Prevalence of virulence determinants in Staphylococcus epidermidis from ICU patients in Kampala, Uganda.
    Okee MS; Joloba ML; Okello M; Najjuka FC; Katabazi FA; Bwanga F; Nanteza A; Kateete DP
    J Infect Dev Ctries; 2012 Mar; 6(3):242-50. PubMed ID: 22421605
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Search for the insertion element IS256 within the ica locus of Staphylococcus epidermidis clinical isolates collected from biomaterial-associated infections.
    Arciola CR; Campoccia D; Gamberini S; Rizzi S; Donati ME; Baldassarri L; Montanaro L
    Biomaterials; 2004 Aug; 25(18):4117-25. PubMed ID: 15046902
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Phenotypic and genetic analysis of biofilm formation by Staphylococcus epidermidis.
    Līduma I; Tračevska T; Bērs U; Žileviča A
    Medicina (Kaunas); 2012; 48(6):305-9. PubMed ID: 22885364
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The presence of icaADBC is detrimental to the colonization of human skin by Staphylococcus epidermidis.
    Rogers KL; Rupp ME; Fey PD
    Appl Environ Microbiol; 2008 Oct; 74(19):6155-7. PubMed ID: 18689520
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Staphylococcus epidermidis with the icaA⁻/icaD⁻/IS256⁻ genotype and protein or protein/extracellular-DNA biofilm is frequent in ocular infections.
    Juárez-Verdayes MA; Ramón-Peréz ML; Flores-Páez LA; Camarillo-Márquez O; Zenteno JC; Jan-Roblero J; Cancino-Diaz ME; Cancino-Diaz JC
    J Med Microbiol; 2013 Oct; 62(Pt 10):1579-1587. PubMed ID: 23861297
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Complete genome sequencing of three human clinical isolates of Staphylococcus caprae reveals virulence factors similar to those of S. epidermidis and S. capitis.
    Watanabe S; Aiba Y; Tan XE; Li FY; Boonsiri T; Thitiananpakorn K; Cui B; Sato'o Y; Kiga K; Sasahara T; Cui L
    BMC Genomics; 2018 Nov; 19(1):810. PubMed ID: 30409159
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Coagulase-negative staphylococcal bloodstream and prosthetic-device-associated infections: the role of biofilm formation and distribution of adhesin and toxin genes.
    Giormezis N; Kolonitsiou F; Foka A; Drougka E; Liakopoulos A; Makri A; Papanastasiou AD; Vogiatzi A; Dimitriou G; Marangos M; Christofidou M; Anastassiou ED; Petinaki E; Spiliopoulou I
    J Med Microbiol; 2014 Nov; 63(Pt 11):1500-1508. PubMed ID: 25082946
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Phenotypic and genotypic markers of Staphylococcus epidermidis virulence.
    Gelosia A; Baldassarri L; Deighton M; van Nguyen T
    Clin Microbiol Infect; 2001 Apr; 7(4):193-9. PubMed ID: 11422241
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Virulence gene expression by Staphylococcus epidermidis biofilm cells exposed to antibiotics.
    Gomes F; Teixeira P; Cerca N; Ceri H; Oliveira R
    Microb Drug Resist; 2011 Jun; 17(2):191-6. PubMed ID: 21395450
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.