These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
229 related articles for article (PubMed ID: 12951010)
1. Sustained release of ascorbate-2-phosphate and dexamethasone from porous PLGA scaffolds for bone tissue engineering using mesenchymal stem cells. Kim H; Kim HW; Suh H Biomaterials; 2003 Nov; 24(25):4671-9. PubMed ID: 12951010 [TBL] [Abstract][Full Text] [Related]
2. In vivo bone formation by human marrow stromal cells in biodegradable scaffolds that release dexamethasone and ascorbate-2-phosphate. Kim H; Suh H; Jo SA; Kim HW; Lee JM; Kim EH; Reinwald Y; Park SH; Min BH; Jo I Biochem Biophys Res Commun; 2005 Jul; 332(4):1053-60. PubMed ID: 15922303 [TBL] [Abstract][Full Text] [Related]
3. The bone formation in vitro and mandibular defect repair using PLGA porous scaffolds. Ren T; Ren J; Jia X; Pan K J Biomed Mater Res A; 2005 Sep; 74(4):562-9. PubMed ID: 16025492 [TBL] [Abstract][Full Text] [Related]
4. Microsphere-based drug releasing scaffolds for inducing osteogenesis of human mesenchymal stem cells in vitro. Shi X; Wang Y; Varshney RR; Ren L; Gong Y; Wang DA Eur J Pharm Sci; 2010 Jan; 39(1-3):59-67. PubMed ID: 19895885 [TBL] [Abstract][Full Text] [Related]
5. Dexamethasone-releasing biodegradable polymer scaffolds fabricated by a gas-foaming/salt-leaching method. Yoon JJ; Kim JH; Park TG Biomaterials; 2003 Jun; 24(13):2323-9. PubMed ID: 12699670 [TBL] [Abstract][Full Text] [Related]
6. Tissue-engineered composite scaffold of poly(lactide-co-glycolide) and hydroxyapatite nanoparticles seeded with autologous mesenchymal stem cells for bone regeneration. Zhang B; Zhang PB; Wang ZL; Lyu ZW; Wu H J Zhejiang Univ Sci B; 2017 Nov.; 18(11):963-976. PubMed ID: 29119734 [TBL] [Abstract][Full Text] [Related]
7. Sustained release of vascular endothelial growth factor from mineralized poly(lactide-co-glycolide) scaffolds for tissue engineering. Murphy WL; Peters MC; Kohn DH; Mooney DJ Biomaterials; 2000 Dec; 21(24):2521-7. PubMed ID: 11071602 [TBL] [Abstract][Full Text] [Related]
8. In vitro mineralization of human mesenchymal stem cells on three-dimensional type I collagen versus PLGA scaffolds: a comparative analysis. Kruger EA; Im DD; Bischoff DS; Pereira CT; Huang W; Rudkin GH; Yamaguchi DT; Miller TA Plast Reconstr Surg; 2011 Jun; 127(6):2301-2311. PubMed ID: 21617464 [TBL] [Abstract][Full Text] [Related]
9. Biofabrication of a PLGA-TCP-based porous bioactive bone substitute with sustained release of icaritin. Xie XH; Wang XL; Zhang G; He YX; Leng Y; Tang TT; Pan X; Qin L J Tissue Eng Regen Med; 2015 Aug; 9(8):961-72. PubMed ID: 23255530 [TBL] [Abstract][Full Text] [Related]
10. Osteochondral repair using porous poly(lactide-co-glycolide)/nano-hydroxyapatite hybrid scaffolds with undifferentiated mesenchymal stem cells in a rat model. Xue D; Zheng Q; Zong C; Li Q; Li H; Qian S; Zhang B; Yu L; Pan Z J Biomed Mater Res A; 2010 Jul; 94(1):259-70. PubMed ID: 20166224 [TBL] [Abstract][Full Text] [Related]
11. Drug delivery from hydroxyapatite-coated titanium surfaces using biodegradable particle carriers. Son JS; Choi YA; Park EK; Kwon TY; Kim KH; Lee KB J Biomed Mater Res B Appl Biomater; 2013 Feb; 101(2):247-57. PubMed ID: 23143817 [TBL] [Abstract][Full Text] [Related]
12. Development of a sustained-release system for perivascular delivery of dipyridamole. Zhu W; Masaki T; Bae YH; Rathi R; Cheung AK; Kern SE J Biomed Mater Res B Appl Biomater; 2006 Apr; 77(1):135-43. PubMed ID: 16206204 [TBL] [Abstract][Full Text] [Related]
13. Preparation of dexamethasone-loaded biphasic calcium phosphate nanoparticles/collagen porous composite scaffolds for bone tissue engineering. Chen Y; Kawazoe N; Chen G Acta Biomater; 2018 Feb; 67():341-353. PubMed ID: 29242161 [TBL] [Abstract][Full Text] [Related]
14. Development of Composite Poly(Lactide-co-Glycolide)- Nanodiamond Scaffolds for Bone Cell Growth. Brady MA; Renzing A; Douglas TE; Liu Q; Wille S; Parizek M; Bacakova L; Kromka A; Jarosova M; Godier G; Warnkel PH J Nanosci Nanotechnol; 2015 Feb; 15(2):1060-9. PubMed ID: 26353613 [TBL] [Abstract][Full Text] [Related]
15. Effects of VEGF loading on scaffold-confined vascularization. Lindhorst D; Tavassol F; von See C; Schumann P; Laschke MW; Harder Y; Bormann KH; Essig H; Kokemüller H; Kampmann A; Voss A; Mülhaupt R; Menger MD; Gellrich NC; Rücker M J Biomed Mater Res A; 2010 Dec; 95(3):783-92. PubMed ID: 20725981 [TBL] [Abstract][Full Text] [Related]
16. Biocompatibility and osteogenesis of calcium phosphate composite scaffolds containing simvastatin-loaded PLGA microspheres for bone tissue engineering. Zhang HX; Xiao GY; Wang X; Dong ZG; Ma ZY; Li L; Li YH; Pan X; Nie L J Biomed Mater Res A; 2015 Oct; 103(10):3250-8. PubMed ID: 25809455 [TBL] [Abstract][Full Text] [Related]
17. Fabrication and characterization of hydrophilic poly(lactic-co-glycolic acid)/poly(vinyl alcohol) blend cell scaffolds by melt-molding particulate-leaching method. Oh SH; Kang SG; Kim ES; Cho SH; Lee JH Biomaterials; 2003 Oct; 24(22):4011-21. PubMed ID: 12834596 [TBL] [Abstract][Full Text] [Related]
18. Osteogenic Evaluation of Porous Calcium Phosphate Granules with Drug Delivery System Using Nanoparticle Carriers. Son JS; Kwon TY; Kim KH J Nanosci Nanotechnol; 2015 Jan; 15(1):130-3. PubMed ID: 26328316 [TBL] [Abstract][Full Text] [Related]
19. Substance P/dexamethasone-encapsulated PLGA scaffold fabricated using supercritical fluid process for calvarial bone regeneration. Kim SH; Kim JE; Kim SH; Jung Y J Tissue Eng Regen Med; 2017 Dec; 11(12):3469-3480. PubMed ID: 28568973 [TBL] [Abstract][Full Text] [Related]
20. Preparation and properties of poly(lactide-co-glycolide) (PLGA)/ nano-hydroxyapatite (NHA) scaffolds by thermally induced phase separation and rabbit MSCs culture on scaffolds. Huang YX; Ren J; Chen C; Ren TB; Zhou XY J Biomater Appl; 2008 Mar; 22(5):409-32. PubMed ID: 17494961 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]