These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
350 related articles for article (PubMed ID: 12951439)
1. Analysis of yeast prion aggregates with amyloid-staining compound in vivo. Kimura Y; Koitabashi S; Fujita T Cell Struct Funct; 2003 Jun; 28(3):187-93. PubMed ID: 12951439 [TBL] [Abstract][Full Text] [Related]
2. Effects of Q/N-rich, polyQ, and non-polyQ amyloids on the de novo formation of the [PSI+] prion in yeast and aggregation of Sup35 in vitro. Derkatch IL; Uptain SM; Outeiro TF; Krishnan R; Lindquist SL; Liebman SW Proc Natl Acad Sci U S A; 2004 Aug; 101(35):12934-9. PubMed ID: 15326312 [TBL] [Abstract][Full Text] [Related]
3. Generation of prion transmission barriers by mutational control of amyloid conformations. Chien P; DePace AH; Collins SR; Weissman JS Nature; 2003 Aug; 424(6951):948-51. PubMed ID: 12931190 [TBL] [Abstract][Full Text] [Related]
4. The Yarrowia lipolytica orthologs of Sup35p assemble into thioflavin T-negative amyloid fibrils. Kabani M; Melki R Biochem Biophys Res Commun; 2020 Aug; 529(3):533-539. PubMed ID: 32736670 [TBL] [Abstract][Full Text] [Related]
5. Prions are affected by evolution at two levels. Wickner RB; Kelly AC Cell Mol Life Sci; 2016 Mar; 73(6):1131-44. PubMed ID: 26713322 [TBL] [Abstract][Full Text] [Related]
6. Prion and nonprion amyloids: a comparison inspired by the yeast Sup35 protein. Kushnirov VV; Vishnevskaya AB; Alexandrov IM; Ter-Avanesyan MD Prion; 2007; 1(3):179-84. PubMed ID: 19164899 [TBL] [Abstract][Full Text] [Related]
7. Rnq1: an epigenetic modifier of protein function in yeast. Sondheimer N; Lindquist S Mol Cell; 2000 Jan; 5(1):163-72. PubMed ID: 10678178 [TBL] [Abstract][Full Text] [Related]
8. Strain-specific sequences required for yeast [PSI+] prion propagation. Chang HY; Lin JY; Lee HC; Wang HL; King CY Proc Natl Acad Sci U S A; 2008 Sep; 105(36):13345-50. PubMed ID: 18757753 [TBL] [Abstract][Full Text] [Related]
9. Origins and kinetic consequences of diversity in Sup35 yeast prion fibers. DePace AH; Weissman JS Nat Struct Biol; 2002 May; 9(5):389-96. PubMed ID: 11938354 [TBL] [Abstract][Full Text] [Related]
10. Conformational diversity in a yeast prion dictates its seeding specificity. Chien P; Weissman JS Nature; 2001 Mar; 410(6825):223-7. PubMed ID: 11242084 [TBL] [Abstract][Full Text] [Related]
11. Radically different amyloid conformations dictate the seeding specificity of a chimeric Sup35 prion. Foo CK; Ohhashi Y; Kelly MJ; Tanaka M; Weissman JS J Mol Biol; 2011 Apr; 408(1):1-8. PubMed ID: 21333653 [TBL] [Abstract][Full Text] [Related]
12. Prions of fungi: inherited structures and biological roles. Wickner RB; Edskes HK; Shewmaker F; Nakayashiki T Nat Rev Microbiol; 2007 Aug; 5(8):611-8. PubMed ID: 17632572 [TBL] [Abstract][Full Text] [Related]
13. Increased [PSI+] appearance by fusion of Rnq1 with the prion domain of Sup35 in Saccharomyces cerevisiae. Choe YJ; Ryu Y; Kim HJ; Seok YJ Eukaryot Cell; 2009 Jul; 8(7):968-76. PubMed ID: 19411620 [TBL] [Abstract][Full Text] [Related]