These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
263 related articles for article (PubMed ID: 12951883)
1. Inducing proliferation of human amnion epithelial and mesenchymal cells for prospective engineering of membrane repair. Ochsenbein-Kölble N; Bilic G; Hall H; Huch R; Zimmermann R J Perinat Med; 2003; 31(4):287-94. PubMed ID: 12951883 [TBL] [Abstract][Full Text] [Related]
2. In vitro lesion repair by human amnion epithelial and mesenchymal cells. Bilic G; Ochsenbein-Kölble N; Hall H; Huch R; Zimmermann R Am J Obstet Gynecol; 2004 Jan; 190(1):87-92. PubMed ID: 14749641 [TBL] [Abstract][Full Text] [Related]
3. Human preterm amnion cells cultured in 3-dimensional collagen I and fibrin matrices for tissue engineering purposes. Bilic G; Hall H; Bittermann AG; Zammeretti P; Burkhart T; Ochsenbein-Kölble N; Zimmermann R Am J Obstet Gynecol; 2005 Nov; 193(5):1724-32. PubMed ID: 16260217 [TBL] [Abstract][Full Text] [Related]
4. Manufacture of a cell-free amnion matrix scaffold that supports amnion cell outgrowth in vitro. Portmann-Lanz CB; Ochsenbein-Kölble N; Marquardt K; Lüthi U; Zisch A; Zimmermann R Placenta; 2007 Jan; 28(1):6-13. PubMed ID: 16516964 [TBL] [Abstract][Full Text] [Related]
5. [Experimental study on porcine keratinocytes cultured and purified rapidly and cocultured on acellular amnion in vitro]. Fan W; Yang Z; Li X; Wang Z; Zhi W; Qiu L Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2006 Mar; 20(3):282-6. PubMed ID: 16579243 [TBL] [Abstract][Full Text] [Related]
6. [Human preterm amnion cells cultured in three-dimensional collagen I matrix]. Liu F; Qi H Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2010 Apr; 27(2):384-8. PubMed ID: 20481324 [TBL] [Abstract][Full Text] [Related]
7. The Young's modulus of fetal preterm and term amniotic membranes. Benson-Martin J; Zammaretti P; Bilic G; Schweizer T; Portmann-Lanz B; Burkhardt T; Zimmermann R; Ochsenbein-Kölble N Eur J Obstet Gynecol Reprod Biol; 2006; 128(1-2):103-7. PubMed ID: 16442204 [TBL] [Abstract][Full Text] [Related]
8. Equine bone marrow mesenchymal or amniotic epithelial stem cells as feeder in a model for the in vitro culture of bovine embryos. Lange-Consiglio A; Maggio V; Pellegrino L; Cremonesi F Zygote; 2012 Feb; 20(1):45-51. PubMed ID: 21205388 [TBL] [Abstract][Full Text] [Related]
9. Isolation of mesenchymal stem cells of fetal or maternal origin from human placenta. In 't Anker PS; Scherjon SA; Kleijburg-van der Keur C; de Groot-Swings GM; Claas FH; Fibbe WE; Kanhai HH Stem Cells; 2004; 22(7):1338-45. PubMed ID: 15579651 [TBL] [Abstract][Full Text] [Related]
10. Phenotypic shift of human amniotic epithelial cells in culture is associated with reduced osteogenic differentiation in vitro. Stadler G; Hennerbichler S; Lindenmair A; Peterbauer A; Hofer K; van Griensven M; Gabriel C; Redl H; Wolbank S Cytotherapy; 2008; 10(7):743-52. PubMed ID: 18985480 [TBL] [Abstract][Full Text] [Related]
11. A novel technique to propagate primary human preadipocytes without loss of differentiation capacity. Skurk T; Ecklebe S; Hauner H Obesity (Silver Spring); 2007 Dec; 15(12):2925-31. PubMed ID: 18198300 [TBL] [Abstract][Full Text] [Related]
12. Human adipose tissue-derived mesenchymal stem cells as a novel feeder layer for epithelial cells. Sugiyama H; Maeda K; Yamato M; Hayashi R; Soma T; Hayashida Y; Yang J; Shirakabe M; Matsuyama A; Kikuchi A; Sawa Y; Okano T; Tano Y; Nishida K J Tissue Eng Regen Med; 2008 Oct; 2(7):445-9. PubMed ID: 18792424 [TBL] [Abstract][Full Text] [Related]
13. Increased proliferation of human synovial mesenchymal stem cells with autologous human serum: comparisons with bone marrow mesenchymal stem cells and with fetal bovine serum. Nimura A; Muneta T; Koga H; Mochizuki T; Suzuki K; Makino H; Umezawa A; Sekiya I Arthritis Rheum; 2008 Feb; 58(2):501-10. PubMed ID: 18240254 [TBL] [Abstract][Full Text] [Related]
14. Amnion-derived mesenchymal stromal cells show a mesenchymal-epithelial phenotype in culture. König J; Lang I; Siwetz M; Fröhlich J; Huppertz B Cell Tissue Bank; 2014 Jun; 15(2):193-8. PubMed ID: 24326460 [TBL] [Abstract][Full Text] [Related]
15. Towards optimization of an organotypic assay system that imitates human hair follicle-like epithelial-mesenchymal interactions. Havlickova B; Bíró T; Mescalchin A; Arenberger P; Paus R Br J Dermatol; 2004 Oct; 151(4):753-65. PubMed ID: 15491414 [TBL] [Abstract][Full Text] [Related]
16. Human corneal epithelial equivalents for ocular surface reconstruction in a complete serum-free culture system without unknown factors. Yokoo S; Yamagami S; Usui T; Amano S; Araie M Invest Ophthalmol Vis Sci; 2008 Jun; 49(6):2438-43. PubMed ID: 18515584 [TBL] [Abstract][Full Text] [Related]
17. Utilization of human limbal mesenchymal cells as feeder layers for human limbal stem cells cultured on amniotic membrane. Zhang X; Sun H; Li X; Yuan X; Zhang L; Zhao S J Tissue Eng Regen Med; 2010 Jan; 4(1):38-44. PubMed ID: 19813216 [TBL] [Abstract][Full Text] [Related]
18. The development of a serum-free derived bioengineered conjunctival epithelial equivalent using an ultrathin poly(epsilon-caprolactone) membrane substrate. Ang LP; Cheng ZY; Beuerman RW; Teoh SH; Zhu X; Tan DT Invest Ophthalmol Vis Sci; 2006 Jan; 47(1):105-12. PubMed ID: 16384951 [TBL] [Abstract][Full Text] [Related]
19. Engineering cartilage-like tissue using human mesenchymal stem cells and silk protein scaffolds. Meinel L; Hofmann S; Karageorgiou V; Zichner L; Langer R; Kaplan D; Vunjak-Novakovic G Biotechnol Bioeng; 2004 Nov; 88(3):379-91. PubMed ID: 15486944 [TBL] [Abstract][Full Text] [Related]