These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

193 related articles for article (PubMed ID: 12952089)

  • 1. The dependence of ultrasonic backscatter on trabecular thickness in human calcaneus: theoretical and experimental results.
    Wear KA; Laib A
    IEEE Trans Ultrason Ferroelectr Freq Control; 2003 Aug; 50(8):979-86. PubMed ID: 12952089
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Measurement of dependence of backscatter coefficient from cylinders on frequency and diameter using focused transducers--with applications in trabecular bone.
    Wear KA
    J Acoust Soc Am; 2004 Jan; 115(1):66-72. PubMed ID: 14758996
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The effect of phase cancellation on estimates of broadband ultrasound attenuation and backscatter coefficient in human calcaneus in vitro.
    Wear KA
    IEEE Trans Ultrason Ferroelectr Freq Control; 2008 Feb; 55(2):384-90. PubMed ID: 18334344
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Prediction of frequency-dependent ultrasonic backscatter in cancellous bone using statistical weak scattering model.
    Jenson F; Padilla F; Laugier P
    Ultrasound Med Biol; 2003 Mar; 29(3):455-64. PubMed ID: 12706197
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Influence of the precision of spectral backscatter measurements on the estimation of scatterers size in cancellous bone.
    Padilla F; Jenson F; Laugier P
    Ultrasonics; 2006 Dec; 44 Suppl 1():e57-60. PubMed ID: 16904147
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ultrasonic scattering from cancellous bone: a review.
    Wear KA
    IEEE Trans Ultrason Ferroelectr Freq Control; 2008 Jul; 55(7):1432-41. PubMed ID: 18986932
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fundamental precision limitations for measurements of frequency dependence of backscatter: applications in tissue-mimicking phantoms and trabecular bone.
    Wear KA
    J Acoust Soc Am; 2001 Dec; 110(6):3275-82. PubMed ID: 11785828
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Frequency dependence of ultrasonic backscattering in cancellous bone: autocorrelation model and experimental results.
    Chaffaï S; Roberjot V; Peyrin F; Berger G; Laugier P
    J Acoust Soc Am; 2000 Nov; 108(5 Pt 1):2403-11. PubMed ID: 11108380
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Frequency dependence of ultrasonic backscatter from human trabecular bone: theory and experiment.
    Wear KA
    J Acoust Soc Am; 1999 Dec; 106(6):3659-64. PubMed ID: 10615704
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Anisotropy of ultrasonic backscatter and attenuation from human calcaneus: implications for relative roles of absorption and scattering in determining attenuation.
    Wear KA
    J Acoust Soc Am; 2000 Jun; 107(6):3474-9. PubMed ID: 10875391
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Estimation of trabecular thickness using ultrasonic backcatter.
    Padilla F; Jenson F; Laugier P
    Ultrason Imaging; 2006 Jan; 28(1):3-22. PubMed ID: 16924879
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Analysis of frequency dependence of ultrasonic backscatter coefficient in cancellous bone.
    Ta D; Wang W; Huang K; Wang Y; Le LH
    J Acoust Soc Am; 2008 Dec; 124(6):4083-90. PubMed ID: 19206830
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Variability in Ultrasound Backscatter Induced by Trabecular Microstructure Deterioration in Cancellous Bone.
    Chou X; Xu F; Li Y; Liu C; Ta D; Le LH
    Biomed Res Int; 2018; 2018():4786329. PubMed ID: 29780823
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization of trabecular bone using the backscattered spectral centroid shift.
    Wear KA
    IEEE Trans Ultrason Ferroelectr Freq Control; 2003 Apr; 50(4):402-7. PubMed ID: 12744396
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Relationships among ultrasonic and mechanical properties of cancellous bone in human calcaneus in vitro.
    Wear KA; Nagaraja S; Dreher ML; Sadoughi S; Zhu S; Keaveny TM
    Bone; 2017 Oct; 103():93-101. PubMed ID: 28666970
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ultrasonic characterization of human cancellous bone using transmission and backscatter measurements: relationships to density and microstructure.
    Chaffaî S; Peyrin F; Nuzzo S; Porcher R; Berger G; Laugier P
    Bone; 2002 Jan; 30(1):229-37. PubMed ID: 11792590
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Prediction of backscatter coefficient in trabecular bones using a numerical model of three-dimensional microstructure.
    Padilla F; Peyrin F; Laugier P
    J Acoust Soc Am; 2003 Feb; 113(2):1122-9. PubMed ID: 12597205
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Correlations of the frequency dependence of the ultrasonic backscatter coefficient with the bone volume fraction and the trabecular thickness in bovine trabecular bone: Application of the binary mixture model.
    Lee KI
    J Acoust Soc Am; 2019 May; 145(5):EL393. PubMed ID: 31153347
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Backscatter measurement of cancellous bone using the ultrasound transit time spectroscopy.
    Jia Y; Han S; Li B; Liu C; Ta D
    J Acoust Soc Am; 2024 Apr; 155(4):2670-2686. PubMed ID: 38639562
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Relationships of ultrasonic backscatter with ultrasonic attenuation, sound speed and bone mineral density in human calcaneus.
    Wear KA; Stuber AP; Reynolds JC
    Ultrasound Med Biol; 2000 Oct; 26(8):1311-6. PubMed ID: 11120369
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.