These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

101 related articles for article (PubMed ID: 12952336)

  • 1. Detection, identification, and estimation of biological aerosols and vapors with a Fourier-transform infrared spectrometer.
    Ben-David A; Ren H
    Appl Opt; 2003 Aug; 42(24):4887-900. PubMed ID: 12952336
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Remote detection of biological aerosols at a distance of 3 km with a passive Fourier transform infrared (FTIR) sensor.
    Ben-David A
    Opt Express; 2003 Mar; 11(5):418-29. PubMed ID: 19461748
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Passive detection of biological aerosols in the atmosphere with a Fourier Transform Instrument (FTIR)--the results of the measurements in the laboratory and in the field.
    Błęcka MI; Rataj M; Szymański G
    Orig Life Evol Biosph; 2012 Jun; 42(2-3):101-11. PubMed ID: 22707349
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Radiative transfer model for aerosols at infrared wavelengths for passive remote sensing applications: revisited.
    Ben-David A; Davidson CE; Embury JF
    Appl Opt; 2008 Nov; 47(31):5924-37. PubMed ID: 19122735
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Lidar detection algorithm for time and range anomalies.
    Ben-David A; Davidson CE; Vanderbeek RG
    Appl Opt; 2007 Oct; 46(29):7275-88. PubMed ID: 17932542
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Passive standoff detection of Bacillus subtilis aerosol by Fourier-transform infrared radiometry.
    Thériault JM; Puckrin E; Jensen JO
    Appl Opt; 2003 Nov; 42(33):6696-703. PubMed ID: 14658474
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Radiative transfer model for aerosols in infrared wavelengths for passive remote sensing applications.
    Ben-David A; Embury JF; Davidson CE
    Appl Opt; 2006 Sep; 45(26):6860-75. PubMed ID: 16926922
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reconstruction of passive open-path FTIR ambient spectra using meteorological measurements and its application for detection of aerosol cloud drift.
    Kira O; Dubowski Y; Linker R
    Opt Express; 2015 Jul; 23(15):A916-29. PubMed ID: 26367691
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Passive remote monitoring of chemical vapors by differential Fourier-transform infrared radiometry: results at a range of 1.5 km.
    Thériault JM; Puckrin E; Bouffard F; Déry B
    Appl Opt; 2004 Feb; 43(6):1425-34. PubMed ID: 15008550
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Optical properties research of Bacillus subtilis spores by Fourier transform infrared spectroscopy].
    Feng MC; Xu L; Gao MG; Jiao Y; Wei XL; Jin L; Cheng SY; Li XX; Feng SX
    Guang Pu Xue Yu Guang Pu Fen Xi; 2012 Dec; 32(12):3193-6. PubMed ID: 23427533
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [An algorithm for real-time quantitative analysis of remote detection spectrum of chemical vapor with passive Fourier-transform infrared spectroscopy].
    Zhang J; Chen Z; Xun Y
    Guang Pu Xue Yu Guang Pu Fen Xi; 1999 Jun; 19(3):310-3. PubMed ID: 15819042
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Measured infrared optical cross sections for a variety of chemical and biological aerosol simulants.
    Gurton KP; Ligon D; Dahmani R
    Appl Opt; 2004 Aug; 43(23):4564-70. PubMed ID: 15376433
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identification of bacterial spores using statistical analysis of Fourier transform infrared photoacoustic spectroscopy data.
    Thompson SE; Foster NS; Johnson TJ; Valentine NB; Amonette JE
    Appl Spectrosc; 2003 Aug; 57(8):893-9. PubMed ID: 14661830
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Remote detection of heated ethanol plumes by airborne passive Fourier transform infrared spectrometry.
    Tarumi T; Small GW; Combs RJ; Kroutil RT
    Appl Spectrosc; 2003 Nov; 57(11):1432-41. PubMed ID: 14658159
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Detection and characterization of chemical vapor fugitive emissions by nonlinear optimal estimation: theory and simulation.
    Gittins CM
    Appl Opt; 2009 Aug; 48(23):4545-61. PubMed ID: 19668269
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Direct radiative forcing due to aerosols in Asia during March 2002.
    Park SU; Jeong JI
    Sci Total Environ; 2008 Dec; 407(1):394-404. PubMed ID: 18804844
    [TBL] [Abstract][Full Text] [Related]  

  • 17. On-line measurement of fluorescent aerosols near an industrial zone in the Yangtze River Delta region using a wideband integrated bioaerosol spectrometer.
    Ma Y; Wang Z; Yang D; Diao Y; Wang W; Zhang H; Zhu W; Zheng J
    Sci Total Environ; 2019 Mar; 656():447-457. PubMed ID: 30522027
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Applying open-path Fourier transform infrared spectroscopy for measuring aerosols.
    Wu CF; Chen YL; Chen CC; Yang TT; Chang PE
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2007 Jul; 42(8):1131-40. PubMed ID: 17616885
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Assessment and statistical modeling of the relationship between remotely sensed aerosol optical depth and PM2.5 in the eastern United States.
    Paciorek CJ; Liu Y;
    Res Rep Health Eff Inst; 2012 May; (167):5-83; discussion 85-91. PubMed ID: 22838153
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Droplet size spectra and water-vapor concentration of laboratory water clouds: inversion of Fourier transform infrared (500-5000 cm(-1)) optical-depth measurement.
    Arnott WP; Schmitt C; Liu Y; Hallett J
    Appl Opt; 1997 Jul; 36(21):5205-16. PubMed ID: 18259335
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.