These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
275 related articles for article (PubMed ID: 12952354)
1. Using improved neural network model to analyze RSP, NOx and NO2 levels in urban air in Mong Kok, Hong Kong. Lu WZ; Wang WJ; Wang XK; Xu ZB; Leung AY Environ Monit Assess; 2003 Sep; 87(3):235-54. PubMed ID: 12952354 [TBL] [Abstract][Full Text] [Related]
2. Potential assessment of a neural network model with PCA/RBF approach for forecasting pollutant trends in Mong Kok urban air, Hong Kong. Lu WZ; Wang WJ; Wang XK; Yan SH; Lam JC Environ Res; 2004 Sep; 96(1):79-87. PubMed ID: 15261787 [TBL] [Abstract][Full Text] [Related]
3. The impact of the congestion charging scheme on air quality in London. Part 1. Emissions modeling and analysis of air pollution measurements. Kelly F; Anderson HR; Armstrong B; Atkinson R; Barratt B; Beevers S; Derwent D; Green D; Mudway I; Wilkinson P; Res Rep Health Eff Inst; 2011 Apr; (155):5-71. PubMed ID: 21830496 [TBL] [Abstract][Full Text] [Related]
4. Predicting hourly air pollutant levels using artificial neural networks coupled with uncertainty analysis by Monte Carlo simulations. Arhami M; Kamali N; Rajabi MM Environ Sci Pollut Res Int; 2013 Jul; 20(7):4777-89. PubMed ID: 23292230 [TBL] [Abstract][Full Text] [Related]
5. Seasonal variation of air pollution index: Hong Kong case study. Wang XK; Lu WZ Chemosphere; 2006 May; 63(8):1261-72. PubMed ID: 16325232 [TBL] [Abstract][Full Text] [Related]
6. The London low emission zone baseline study. Kelly F; Armstrong B; Atkinson R; Anderson HR; Barratt B; Beevers S; Cook D; Green D; Derwent D; Mudway I; Wilkinson P; Res Rep Health Eff Inst; 2011 Nov; (163):3-79. PubMed ID: 22315924 [TBL] [Abstract][Full Text] [Related]
7. Potential assessment of the "support vector machine" method in forecasting ambient air pollutant trends. Lu WZ; Wang WJ Chemosphere; 2005 Apr; 59(5):693-701. PubMed ID: 15792667 [TBL] [Abstract][Full Text] [Related]
8. Prediction of maximum daily ozone level using combined neural network and statistical characteristics. Wang W; Lu W; Wang X; Leung AY Environ Int; 2003 Aug; 29(5):555-62. PubMed ID: 12742398 [TBL] [Abstract][Full Text] [Related]
9. Part 5. Public health and air pollution in Asia (PAPA): a combined analysis of four studies of air pollution and mortality. Wong CM; Vichit-Vadakan N; Vajanapoom N; Ostro B; Thach TQ; Chau PY; Chan EK; Chung RY; Ou CQ; Yang L; Peiris JS; Thomas GN; Lam TH; Wong TW; Hedley AJ; Kan H; Chen B; Zhao N; London SJ; Song G; Chen G; Zhang Y; Jiang L; Qian Z; He Q; Lin HM; Kong L; Zhou D; Liang S; Zhu Z; Liao D; Liu W; Bentley CM; Dan J; Wang B; Yang N; Xu S; Gong J; Wei H; Sun H; Qin Z; Res Rep Health Eff Inst; 2010 Nov; (154):377-418. PubMed ID: 21446215 [TBL] [Abstract][Full Text] [Related]
10. Neural network model for predicting peak photochemical pollutant levels. Melas D; Kioutsioukis I; Ziomas IC J Air Waste Manag Assoc; 2000 Apr; 50(4):495-501. PubMed ID: 10786000 [TBL] [Abstract][Full Text] [Related]
11. Forecasting of daily air quality index in Delhi. Kumar A; Goyal P Sci Total Environ; 2011 Nov; 409(24):5517-23. PubMed ID: 21962560 [TBL] [Abstract][Full Text] [Related]
12. Part 4. Interaction between air pollution and respiratory viruses: time-series study of daily mortality and hospital admissions in Hong Kong. Wong CM; Thach TQ; Chau PY; Chan EK; Chung RY; Ou CQ; Yang L; Peiris JS; Thomas GN; Lam TH; Wong TW; Hedley AJ; Res Rep Health Eff Inst; 2010 Nov; (154):283-362. PubMed ID: 21446214 [TBL] [Abstract][Full Text] [Related]
13. Impact of NO Zeng L; Yang J; Guo H; Lyu X Chemosphere; 2022 Sep; 302():134816. PubMed ID: 35525456 [TBL] [Abstract][Full Text] [Related]
14. Prediction of Air Pollutants Concentration Based on an Extreme Learning Machine: The Case of Hong Kong. Zhang J; Ding W Int J Environ Res Public Health; 2017 Jan; 14(2):. PubMed ID: 28125034 [TBL] [Abstract][Full Text] [Related]
15. Long short-term memory neural network for air pollutant concentration predictions: Method development and evaluation. Li X; Peng L; Yao X; Cui S; Hu Y; You C; Chi T Environ Pollut; 2017 Dec; 231(Pt 1):997-1004. PubMed ID: 28898956 [TBL] [Abstract][Full Text] [Related]
16. Analysis of pollutant levels in central Hong Kong applying neural network method with particle swarm optimization. Lu WZ; Fan HY; Leung AY; Wong JC Environ Monit Assess; 2002 Nov; 79(3):217-30. PubMed ID: 12392160 [TBL] [Abstract][Full Text] [Related]
17. Land use regression modelling of air pollution in high density high rise cities: A case study in Hong Kong. Lee M; Brauer M; Wong P; Tang R; Tsui TH; Choi C; Cheng W; Lai PC; Tian L; Thach TQ; Allen R; Barratt B Sci Total Environ; 2017 Aug; 592():306-315. PubMed ID: 28319717 [TBL] [Abstract][Full Text] [Related]
18. Evaluation of ambient air quality in Guangzhou, China. Zhou K; Ye YH; Liu Q; Liu AJ; Peng SL J Environ Sci (China); 2007; 19(4):432-7. PubMed ID: 17915706 [TBL] [Abstract][Full Text] [Related]
19. Evaluation of a multiple regression model for the forecasting of the concentrations of NOx and PM10 in Athens and Helsinki. Vlachogianni A; Kassomenos P; Karppinen A; Karakitsios S; Kukkonen J Sci Total Environ; 2011 Mar; 409(8):1559-71. PubMed ID: 21277004 [TBL] [Abstract][Full Text] [Related]
20. Using wavelet-feedforward neural networks to improve air pollution forecasting in urban environments. Dunea D; Pohoata A; Iordache S Environ Monit Assess; 2015 Jul; 187(7):477. PubMed ID: 26130243 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]