These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 12952465)

  • 1. Loading peptidyl-coenzyme A onto peptidyl carrier proteins: a novel approach in characterizing macrocyclization by thioesterase domains.
    Sieber SA; Walsh CT; Marahiel MA
    J Am Chem Soc; 2003 Sep; 125(36):10862-6. PubMed ID: 12952465
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterization of Sfp, a Bacillus subtilis phosphopantetheinyl transferase for peptidyl carrier protein domains in peptide synthetases.
    Quadri LE; Weinreb PH; Lei M; Nakano MM; Zuber P; Walsh CT
    Biochemistry; 1998 Feb; 37(6):1585-95. PubMed ID: 9484229
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structure-based mutational analysis of the 4'-phosphopantetheinyl transferases Sfp from Bacillus subtilis: carrier protein recognition and reaction mechanism.
    Mofid MR; Finking R; Essen LO; Marahiel MA
    Biochemistry; 2004 Apr; 43(14):4128-36. PubMed ID: 15065855
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Chemo- and regioselective peptide cyclization triggered by the N-terminal fatty acid chain length: the recombinant cyclase of the calcium-dependent antibiotic from Streptomyces coelicolor.
    Grünewald J; Sieber SA; Marahiel MA
    Biochemistry; 2004 Mar; 43(10):2915-25. PubMed ID: 15005627
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Crystal structure of the surfactin synthetase-activating enzyme sfp: a prototype of the 4'-phosphopantetheinyl transferase superfamily.
    Reuter K; Mofid MR; Marahiel MA; Ficner R
    EMBO J; 1999 Dec; 18(23):6823-31. PubMed ID: 10581256
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Peptidyl thiophenols as substrates for nonribosomal peptide cyclases.
    Sieber SA; Tao J; Walsh CT; Marahiel MA
    Angew Chem Int Ed Engl; 2004 Jan; 43(4):493-8. PubMed ID: 14735544
    [No Abstract]   [Full Text] [Related]  

  • 7. Chapter 10 using phosphopantetheinyl transferases for enzyme posttranslational activation, site specific protein labeling and identification of natural product biosynthetic gene clusters from bacterial genomes.
    Sunbul M; Zhang K; Yin J
    Methods Enzymol; 2009; 458():255-75. PubMed ID: 19374986
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Stoichiometry and specificity of in vitro phosphopantetheinylation and aminoacylation of the valine-activating module of surfactin synthetase.
    Weinreb PH; Quadri LE; Walsh CT; Zuber P
    Biochemistry; 1998 Feb; 37(6):1575-84. PubMed ID: 9484228
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The thioesterase domain of the fengycin biosynthesis cluster: a structural base for the macrocyclization of a non-ribosomal lipopeptide.
    Samel SA; Wagner B; Marahiel MA; Essen LO
    J Mol Biol; 2006 Jun; 359(4):876-89. PubMed ID: 16697411
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Direct site-selective covalent protein immobilization catalyzed by a phosphopantetheinyl transferase.
    Wong LS; Thirlway J; Micklefield J
    J Am Chem Soc; 2008 Sep; 130(37):12456-64. PubMed ID: 18722432
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Recognition of hybrid peptidyl carrier proteins/acyl carrier proteins in nonribosomal peptide synthetase modules by the 4'-phosphopantetheinyl transferases AcpS and Sfp.
    Mofid MR; Finking R; Marahiel MA
    J Biol Chem; 2002 May; 277(19):17023-31. PubMed ID: 11867633
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Phagemid encoded small molecules for high throughput screening of chemical libraries.
    Yin J; Liu F; Schinke M; Daly C; Walsh CT
    J Am Chem Soc; 2004 Oct; 126(42):13570-1. PubMed ID: 15493886
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Site-specific protein labeling by Sfp phosphopantetheinyl transferase.
    Yin J; Lin AJ; Golan DE; Walsh CT
    Nat Protoc; 2006; 1(1):280-5. PubMed ID: 17406245
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mutational analysis of peptidyl carrier protein and acyl carrier protein synthase unveils residues involved in protein-protein recognition.
    Finking R; Mofid MR; Marahiel MA
    Biochemistry; 2004 Jul; 43(28):8946-56. PubMed ID: 15248752
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fluorescence resonance energy transfer as a probe of peptide cyclization catalyzed by nonribosomal thioesterase domains.
    Grünewald J; Kopp F; Mahlert C; Linne U; Sieber SA; Marahiel MA
    Chem Biol; 2005 Aug; 12(8):873-81. PubMed ID: 16125099
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Initiation of surfactin biosynthesis and the role of the SrfD-thioesterase protein.
    Steller S; Sokoll A; Wilde C; Bernhard F; Franke P; Vater J
    Biochemistry; 2004 Sep; 43(35):11331-43. PubMed ID: 15366943
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Utility of epimerization domains for the redesign of nonribosomal peptide synthetases.
    Stein DB; Linne U; Marahiel MA
    FEBS J; 2005 Sep; 272(17):4506-20. PubMed ID: 16128819
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Specific labeling of cell surface proteins with chemically diverse compounds.
    George N; Pick H; Vogel H; Johnsson N; Johnsson K
    J Am Chem Soc; 2004 Jul; 126(29):8896-7. PubMed ID: 15264811
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The substrate promiscuity of a phosphopantetheinyl transferase SchPPT for coenzyme A derivatives and acyl carrier proteins.
    Wang YY; Luo HD; Zhang XS; Lin T; Jiang H; Li YQ
    Arch Microbiol; 2016 Mar; 198(2):193-7. PubMed ID: 26748983
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Genetically encoded short peptide tags for orthogonal protein labeling by Sfp and AcpS phosphopantetheinyl transferases.
    Zhou Z; Cironi P; Lin AJ; Xu Y; Hrvatin S; Golan DE; Silver PA; Walsh CT; Yin J
    ACS Chem Biol; 2007 May; 2(5):337-46. PubMed ID: 17465518
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.