These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

203 related articles for article (PubMed ID: 12952622)

  • 21. A Palaearctic migratory raptor species tracks shifting prey availability within its wintering range in the Sahel.
    Trierweiler C; Mullié WC; Drent RH; Exo KM; Komdeur J; Bairlein F; Harouna A; de Bakker M; Koks BJ
    J Anim Ecol; 2013 Jan; 82(1):107-20. PubMed ID: 23137184
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Understanding the migratory orientation program of birds: extending laboratory studies to study free-flying migrants in a natural setting.
    Thorup K; Holland RA; Tøttrup AP; Wikelski M
    Integr Comp Biol; 2010 Sep; 50(3):315-22. PubMed ID: 21558206
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Adaptive strategies of high-flying migratory hoverflies in response to wind currents.
    Gao B; Wotton KR; Hawkes WLS; Menz MHM; Reynolds DR; Zhai BP; Hu G; Chapman JW
    Proc Biol Sci; 2020 Jun; 287(1928):20200406. PubMed ID: 32486972
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Flight orientation behaviors promote optimal migration trajectories in high-flying insects.
    Chapman JW; Nesbit RL; Burgin LE; Reynolds DR; Smith AD; Middleton DR; Hill JK
    Science; 2010 Feb; 327(5966):682-5. PubMed ID: 20133570
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Juvenile songbirds compensate for displacement to oceanic islands during autumn migration.
    Thorup K; Ortvad TE; Rabøl J; Holland RA; Tøttrup AP; Wikelski M
    PLoS One; 2011 Mar; 6(3):e17903. PubMed ID: 21464975
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Confronting the winds: orientation and flight behaviour of roosting swifts, Apus apus.
    Bäckman J; Alerstam T
    Proc Biol Sci; 2001 May; 268(1471):1081-7. PubMed ID: 11375093
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Navigating north: how body mass and winds shape avian flight behaviours across a North American migratory flyway.
    Horton KG; Van Doren BM; La Sorte FA; Fink D; Sheldon D; Farnsworth A; Kelly JF
    Ecol Lett; 2018 Jul; 21(7):1055-1064. PubMed ID: 29736919
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Tracking animals to their death.
    Hays GC
    J Anim Ecol; 2014 Jan; 83(1):5-6. PubMed ID: 24192383
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Risk-sensitive response of soaring birds to crosswind over dangerous sea highlights age-specific differences in migratory performance.
    Santos CD; Sapir N; Becciu P; Granadeiro JP; Wikelski M
    Proc Biol Sci; 2024 May; 291(2023):20240454. PubMed ID: 38807519
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Interspecific comparison of the performance of soaring migrants in relation to morphology, meteorological conditions and migration strategies.
    Mellone U; Klaassen RH; García-Ripollés C; Limiñana R; López-López P; Pavón D; Strandberg R; Urios V; Vardakis M; Alerstam T
    PLoS One; 2012; 7(7):e39833. PubMed ID: 22768314
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Projected changes in prevailing winds for transatlantic migratory birds under global warming.
    La Sorte FA; Fink D
    J Anim Ecol; 2017 Mar; 86(2):273-284. PubMed ID: 27973732
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Projected changes in wind assistance under climate change for nocturnally migrating bird populations.
    La Sorte FA; Horton KG; Nilsson C; Dokter AM
    Glob Chang Biol; 2019 Feb; 25(2):589-601. PubMed ID: 30537359
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Patterns in diurnal airspace use by migratory landbirds along an ecological barrier.
    Peterson AC; Niemi GJ; Johnson DH
    Ecol Appl; 2015 Apr; 25(3):673-84. PubMed ID: 26214913
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Soaring migrants flexibly respond to sea-breeze in a migratory bottleneck: using first derivatives to identify behavioural adjustments over time.
    Becciu P; Troupin D; Dinevich L; Leshem Y; Sapir N
    Mov Ecol; 2023 Jul; 11(1):44. PubMed ID: 37501209
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Albatrosses employ orientation and routing strategies similar to yacht racers.
    Goto Y; Weimerskirch H; Fukaya K; Yoda K; Naruoka M; Sato K
    Proc Natl Acad Sci U S A; 2024 Jun; 121(23):e2312851121. PubMed ID: 38771864
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Migrating birds avoid flying through fog and low clouds.
    Panuccio M; Dell'Omo G; Bogliani G; Catoni C; Sapir N
    Int J Biometeorol; 2019 Feb; 63(2):231-239. PubMed ID: 30687905
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Bet-hedging and the orientation of juvenile passerines in fall migration.
    Reilly JR; Reilly RJ
    J Anim Ecol; 2009 Sep; 78(5):990-1001. PubMed ID: 19572960
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Flying with the wind: scale dependency of speed and direction measurements in modelling wind support in avian flight.
    Safi K; Kranstauber B; Weinzierl R; Griffin L; Rees EC; Cabot D; Cruz S; Proaño C; Takekawa JY; Newman SH; Waldenström J; Bengtsson D; Kays R; Wikelski M; Bohrer G
    Mov Ecol; 2013; 1(1):4. PubMed ID: 25709818
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Seasonal contrasts in individual consistency of oriental honey buzzards' migration.
    Sugasawa S; Higuchi H
    Biol Lett; 2019 Jun; 15(6):20190131. PubMed ID: 31185821
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Automated telemetry reveals age specific differences in flight duration and speed are driven by wind conditions in a migratory songbird.
    Mitchell GW; Woodworth BK; Taylor PD; Norris DR
    Mov Ecol; 2015; 3(1):19. PubMed ID: 26279850
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.