BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

284 related articles for article (PubMed ID: 12952875)

  • 61. Transcriptome-wide RNA processing kinetics revealed using extremely short 4tU labeling.
    Barrass JD; Reid JE; Huang Y; Hector RD; Sanguinetti G; Beggs JD; Granneman S
    Genome Biol; 2015 Dec; 16():282. PubMed ID: 26679539
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Sequence features of E. coli mRNAs affect their degradation.
    Lenz G; Doron-Faigenboim A; Ron EZ; Tuller T; Gophna U
    PLoS One; 2011; 6(12):e28544. PubMed ID: 22163312
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Relationship between mRNA stability and intron presence.
    Wang HF; Feng L; Niu DK
    Biochem Biophys Res Commun; 2007 Mar; 354(1):203-8. PubMed ID: 17207776
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Multifactorial determinants of protein expression in prokaryotic open reading frames.
    Allert M; Cox JC; Hellinga HW
    J Mol Biol; 2010 Oct; 402(5):905-18. PubMed ID: 20727358
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Relationship between mRNA secondary structure and sequence variability in Chloroplast genes: possible life history implications.
    Krishnan NM; Seligmann H; Rao BJ
    BMC Genomics; 2008 Jan; 9():48. PubMed ID: 18226235
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Number variation of high stability regions is correlated with gene functions.
    Mao Y; Li Q; Wang W; Liang P; Tao S
    Genome Biol Evol; 2013; 5(3):484-93. PubMed ID: 23407773
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Differences in dinucleotide frequencies of human, yeast, and Escherichia coli genes.
    Nakashima H; Nishikawa K; Ooi T
    DNA Res; 1997 Jun; 4(3):185-92. PubMed ID: 9330906
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Genome-wide measurement of RNA secondary structure in yeast.
    Kertesz M; Wan Y; Mazor E; Rinn JL; Nutter RC; Chang HY; Segal E
    Nature; 2010 Sep; 467(7311):103-7. PubMed ID: 20811459
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Systematic probing of the bacterial RNA structurome to reveal new functions.
    Ignatova Z; Narberhaus F
    Curr Opin Microbiol; 2017 Apr; 36():14-19. PubMed ID: 28160611
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Sequence-structure relationships in yeast mRNAs.
    Chursov A; Walter MC; Schmidt T; Mironov A; Shneider A; Frishman D
    Nucleic Acids Res; 2012 Feb; 40(3):956-62. PubMed ID: 21954438
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Global mRNA decay analysis at single nucleotide resolution reveals segmental and positional degradation patterns in a Gram-positive bacterium.
    Kristoffersen SM; Haase C; Weil MR; Passalacqua KD; Niazi F; Hutchison SK; Desany B; Kolstø AB; Tourasse NJ; Read TD; Økstad OA
    Genome Biol; 2012 Apr; 13(4):R30. PubMed ID: 22537947
    [TBL] [Abstract][Full Text] [Related]  

  • 72. CLIPing Staufen to secondary RNA structures: size and location matter!
    Fernández Moya SM; Kiebler MA
    Bioessays; 2015 Oct; 37(10):1062-6. PubMed ID: 26252431
    [TBL] [Abstract][Full Text] [Related]  

  • 73. The relationship between third-codon position nucleotide content, codon bias, mRNA secondary structure and gene expression in the drosophilid alcohol dehydrogenase genes Adh and Adhr.
    Carlini DB; Chen Y; Stephan W
    Genetics; 2001 Oct; 159(2):623-33. PubMed ID: 11606539
    [TBL] [Abstract][Full Text] [Related]  

  • 74. RNA lifetime control, from stereochemistry to gene expression.
    Dendooven T; Luisi BF; Bandyra KJ
    Curr Opin Struct Biol; 2020 Apr; 61():59-70. PubMed ID: 31869589
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Toward global RNA structure analysis.
    Mauger DM; Weeks KM
    Nat Biotechnol; 2010 Nov; 28(11):1178-9. PubMed ID: 21057487
    [No Abstract]   [Full Text] [Related]  

  • 76. Molecular biology: A second layer of information in RNA.
    Ramos SB; Laederach A
    Nature; 2014 Jan; 505(7485):621-2. PubMed ID: 24476882
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Adaptation of mRNA structure to control protein folding.
    Faure G; Ogurtsov AY; Shabalina SA; Koonin EV
    RNA Biol; 2017 Dec; 14(12):1649-1654. PubMed ID: 28722509
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Specificity of mRNA Folding and Its Association with Evolutionarily Adaptive mRNA Secondary Structures.
    Yu G; Zhu H; Chen X; Yang JR
    Genomics Proteomics Bioinformatics; 2021 Dec; 19(6):882-900. PubMed ID: 33607297
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Genome-wide measurement of RNA folding energies.
    Wan Y; Qu K; Ouyang Z; Kertesz M; Li J; Tibshirani R; Makino DL; Nutter RC; Segal E; Chang HY
    Mol Cell; 2012 Oct; 48(2):169-81. PubMed ID: 22981864
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Multiplexed mRNA assembly into ribonucleoprotein particles plays an operon-like role in the control of yeast cell physiology.
    Nair RR; Zabezhinsky D; Gelin-Licht R; Haas BJ; Dyhr MC; Sperber HS; Nusbaum C; Gerst JE
    Elife; 2021 May; 10():. PubMed ID: 33942720
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.