These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
188 related articles for article (PubMed ID: 12953191)
21. Gauging the relative oxidative powers of compound I, ferric-hydroperoxide, and the ferric-hydrogen peroxide species of cytochrome P450 toward C-H hydroxylation of a radical clock substrate. Derat E; Kumar D; Hirao H; Shaik S J Am Chem Soc; 2006 Jan; 128(2):473-84. PubMed ID: 16402834 [TBL] [Abstract][Full Text] [Related]
22. Axial ligand effect on the rate constant of aromatic hydroxylation by iron(IV)-oxo complexes mimicking cytochrome P450 enzymes. Kumar D; Sastry GN; de Visser SP J Phys Chem B; 2012 Jan; 116(1):718-30. PubMed ID: 22132821 [TBL] [Abstract][Full Text] [Related]
23. Complete mechanism of sigma* intramolecular aromatic hydroxylation through O2 activation by a macrocyclic dicopper(I) complex. Poater A; Ribas X; Llobet A; Cavallo L; Solà M J Am Chem Soc; 2008 Dec; 130(52):17710-7. PubMed ID: 19055343 [TBL] [Abstract][Full Text] [Related]
24. How axial ligands control the reactivity of high-valent iron(IV)-oxo porphyrin pi-cation radicals in alkane hydroxylation: a computational study. Kamachi T; Kouno T; Nam W; Yoshizawa K J Inorg Biochem; 2006 Apr; 100(4):751-4. PubMed ID: 16516298 [TBL] [Abstract][Full Text] [Related]
25. Peroxo-type intermediates in class I ribonucleotide reductase and related binuclear non-heme iron enzymes. Jensen KP; Bell CB; Clay MD; Solomon EI J Am Chem Soc; 2009 Sep; 131(34):12155-71. PubMed ID: 19663382 [TBL] [Abstract][Full Text] [Related]
26. Kinetic simulation studies on the transient formation of the oxo-iron(IV) porphyrin radical cation during the reaction of iron(III) tetrakis-5,10,15,20-(N-methyl-4-pyridyl)-porphyrin with hydrogen peroxide in aqueous solution. Saha TK; Karmaker S; Tamagake K Luminescence; 2003; 18(5):259-67. PubMed ID: 14587077 [TBL] [Abstract][Full Text] [Related]
27. Origin of the correlation of the rate constant of substrate hydroxylation by nonheme iron(IV)-oxo complexes with the bond-dissociation energy of the C-H bond of the substrate. Latifi R; Bagherzadeh M; de Visser SP Chemistry; 2009 Jul; 15(27):6651-62. PubMed ID: 19472231 [TBL] [Abstract][Full Text] [Related]
28. Is the bound substrate in nitric oxide synthase protonated or neutral and what is the active oxidant that performs substrate hydroxylation? de Visser SP; Tan LS J Am Chem Soc; 2008 Oct; 130(39):12961-74. PubMed ID: 18774806 [TBL] [Abstract][Full Text] [Related]
29. Mechanistic insight into the aromatic hydroxylation by high-valent iron(IV)-oxo porphyrin pi-cation radical complexes. Kang MJ; Song WJ; Han AR; Choi YS; Jang HG; Nam W J Org Chem; 2007 Aug; 72(16):6301-4. PubMed ID: 17622172 [TBL] [Abstract][Full Text] [Related]
30. High-valent iron(IV)-oxo complexes of heme and non-heme ligands in oxygenation reactions. Nam W Acc Chem Res; 2007 Jul; 40(7):522-31. PubMed ID: 17469792 [TBL] [Abstract][Full Text] [Related]
31. Use of a chemical trigger for electron transfer to characterize a precursor to cluster X in assembly of the iron-radical cofactor of Escherichia coli ribonucleotide reductase. Saleh L; Krebs C; Ley BA; Naik S; Huynh BH; Bollinger JM Biochemistry; 2004 May; 43(20):5953-64. PubMed ID: 15147179 [TBL] [Abstract][Full Text] [Related]
32. A theoretical study of the cis-dihydroxylation mechanism in naphthalene 1,2-dioxygenase. Bassan A; Blomberg MR; Siegbahn PE J Biol Inorg Chem; 2004 Jun; 9(4):439-52. PubMed ID: 15042436 [TBL] [Abstract][Full Text] [Related]
33. Propene activation by the oxo-iron active species of taurine/alpha-ketoglutarate dioxygenase (TauD) enzyme. How does the catalysis compare to heme-enzymes? de Visser SP J Am Chem Soc; 2006 Aug; 128(30):9813-24. PubMed ID: 16866538 [TBL] [Abstract][Full Text] [Related]
34. A structural and Mössbauer study of complexes with Fe(2)(micro-O(H))(2) cores: stepwise oxidation from Fe(II)(micro-OH)(2)Fe(II) through Fe(II)(micro-OH)(2)Fe(III) to Fe(III)(micro-O)(micro-OH)Fe(III). Stubna A; Jo DH; Costas M; Brenessel WW; Andres H; Bominaar EL; Münck E; Que L Inorg Chem; 2004 May; 43(10):3067-79. PubMed ID: 15132612 [TBL] [Abstract][Full Text] [Related]
35. Tetranuclear iron(III) complexes of an octadentate pyridine-carboxylate ligand and their catalytic activity in alkane oxidation by hydrogen peroxide. Gutkina EA; Trukhan VM; Pierpont CG; Mkoyan S; Strelets VV; Nordlander E; Shteinman AA Dalton Trans; 2006 Jan; (3):492-501. PubMed ID: 16395449 [TBL] [Abstract][Full Text] [Related]
36. High-valent nonheme iron-oxo species in biomimetic oxidations. Shan X; Que L J Inorg Biochem; 2006 Apr; 100(4):421-33. PubMed ID: 16530841 [TBL] [Abstract][Full Text] [Related]
37. DFT study of the mechanism for methane hydroxylation by soluble methane monooxygenase (sMMO): effects of oxidation state, spin state, and coordination number. Huang SP; Shiota Y; Yoshizawa K Dalton Trans; 2013 Jan; 42(4):1011-23. PubMed ID: 23108153 [TBL] [Abstract][Full Text] [Related]
38. Reactivity of the heme-dioxygen complex of the inducible nitric oxide synthase in the presence of alternative substrates. Lefèvre-Groboillot D; Boucher JL; Mansuy D; Stuehr DJ FEBS J; 2006 Jan; 273(1):180-91. PubMed ID: 16367758 [TBL] [Abstract][Full Text] [Related]
39. A tryptophan that modulates tetrahydrobiopterin-dependent electron transfer in nitric oxide synthase regulates enzyme catalysis by additional mechanisms. Wang ZQ; Wei CC; Santolini J; Panda K; Wang Q; Stuehr DJ Biochemistry; 2005 Mar; 44(12):4676-90. PubMed ID: 15779894 [TBL] [Abstract][Full Text] [Related]
40. Two faces of a biomimetic non-heme HO-Fe(v)=O oxidant: olefin epoxidation versus cis-dihydroxylation. Bassan A; Blomberg MR; Siegbahn PE; Que L Angew Chem Int Ed Engl; 2005 May; 44(19):2939-41. PubMed ID: 15812868 [No Abstract] [Full Text] [Related] [Previous] [Next] [New Search]