These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
286 related articles for article (PubMed ID: 12953906)
1. Can the cerebral metabolic rate of oxygen be estimated with near-infrared spectroscopy? Boas DA; Strangman G; Culver JP; Hoge RD; Jasdzewski G; Poldrack RA; Rosen BR; Mandeville JB Phys Med Biol; 2003 Aug; 48(15):2405-18. PubMed ID: 12953906 [TBL] [Abstract][Full Text] [Related]
2. Practical steps for applying a new dynamic model to near-infrared spectroscopy measurements of hemodynamic oscillations and transient changes: implications for cerebrovascular and functional brain studies. Kainerstorfer JM; Sassaroli A; Hallacoglu B; Pierro ML; Fantini S Acad Radiol; 2014 Feb; 21(2):185-96. PubMed ID: 24439332 [TBL] [Abstract][Full Text] [Related]
3. Using a multimodal near-infrared spectroscopy and MRI to quantify gray matter metabolic rate for oxygen: A hypothermia validation study. Hashem M; Zhang Q; Wu Y; Johnson TW; Dunn JF Neuroimage; 2020 Feb; 206():116315. PubMed ID: 31669409 [TBL] [Abstract][Full Text] [Related]
4. Task-related oxygenation and cerebral blood volume changes estimated from NIRS signals in motor and cognitive tasks. Tanaka H; Katura T; Sato H Neuroimage; 2014 Jul; 94():107-119. PubMed ID: 24642286 [TBL] [Abstract][Full Text] [Related]
5. Improving estimates of the cerebral metabolic rate of oxygen from optical imaging data. Barrett MJ; Suresh V Neuroimage; 2015 Feb; 106():101-10. PubMed ID: 25463454 [TBL] [Abstract][Full Text] [Related]
6. A temporal comparison of BOLD, ASL, and NIRS hemodynamic responses to motor stimuli in adult humans. Huppert TJ; Hoge RD; Diamond SG; Franceschini MA; Boas DA Neuroimage; 2006 Jan; 29(2):368-82. PubMed ID: 16303317 [TBL] [Abstract][Full Text] [Related]
7. An increase in the deoxygenated hemoglobin concentration induced by a working memory task during the refractory period in the hemodynamic response in the human cerebral cortex. Nakamura K; Shiroto Y; Tamura Y; Koyama K; Takeuchi K; Amanuma M; Nagasawa T; Ozawa S Neurosci Lett; 2020 Jan; 714():134531. PubMed ID: 31586697 [TBL] [Abstract][Full Text] [Related]
8. Near-infrared spectroscopy measurements of cerebral blood flow and oxygen consumption following hypoxia-ischemia in newborn piglets. Tichauer KM; Brown DW; Hadway J; Lee TY; St Lawrence K J Appl Physiol (1985); 2006 Mar; 100(3):850-7. PubMed ID: 16293704 [TBL] [Abstract][Full Text] [Related]
9. Assessment of local brain activation. A simultaneous PET and near-infrared spectroscopy study. Villringer K; Minoshima S; Hock C; Obrig H; Ziegler S; Dirnagl U; Schwaiger M; Villringer A Adv Exp Med Biol; 1997; 413():149-53. PubMed ID: 9238495 [TBL] [Abstract][Full Text] [Related]
10. Near-infrared spectroscopy measurement of oxygen extraction fraction and cerebral metabolic rate of oxygen in newborn piglets. Brown DW; Hadway J; Lee TY Pediatr Res; 2003 Dec; 54(6):861-7. PubMed ID: 12930911 [TBL] [Abstract][Full Text] [Related]
11. T Alderliesten T; De Vis JB; Lemmers PMA; van Bel F; Benders MJNL; Hendrikse J; Petersen ET Neuroimage; 2016 Oct; 139():65-73. PubMed ID: 27291495 [TBL] [Abstract][Full Text] [Related]
12. Near-infrared spectroscopy analysis of frontal lobe dysfunction in schizophrenia. Shinba T; Nagano M; Kariya N; Ogawa K; Shinozaki T; Shimosato S; Hoshi Y Biol Psychiatry; 2004 Jan; 55(2):154-64. PubMed ID: 14732595 [TBL] [Abstract][Full Text] [Related]
13. Near-infrared spectroscopy (NIRS): a non-invasive in vivo methodology for analysis of brain vascular and metabolic activities in real time in rodents. Crespi F Curr Vasc Pharmacol; 2007 Oct; 5(4):305-21. PubMed ID: 17979797 [TBL] [Abstract][Full Text] [Related]
14. Quantification of CMRO(2) without hypercapnia using simultaneous near-infrared spectroscopy and fMRI measurements. Tak S; Jang J; Lee K; Ye JC Phys Med Biol; 2010 Jun; 55(11):3249-69. PubMed ID: 20479515 [TBL] [Abstract][Full Text] [Related]
15. Simultaneous measurements of cerebral oxygenation changes during brain activation by near-infrared spectroscopy and functional magnetic resonance imaging in healthy young and elderly subjects. Mehagnoul-Schipper DJ; van der Kallen BF; Colier WN; van der Sluijs MC; van Erning LJ; Thijssen HO; Oeseburg B; Hoefnagels WH; Jansen RW Hum Brain Mapp; 2002 May; 16(1):14-23. PubMed ID: 11870923 [TBL] [Abstract][Full Text] [Related]
16. Detection of cerebral oxyhaemoglobin changes during vestibular Coriolis cross-coupling stimulation using near infrared spectroscopy. Kobayashi A; Cheung B Neurosci Lett; 2006 Feb; 394(2):83-7. PubMed ID: 16263216 [TBL] [Abstract][Full Text] [Related]
17. Simultaneous quantitative assessment of cerebral physiology using respiratory-calibrated MRI and near-infrared spectroscopy in healthy adults. Alderliesten T; De Vis JB; Lemmers PM; van Bel F; Benders MJ; Hendrikse J; Petersen ET Neuroimage; 2014 Jan; 85 Pt 1():255-63. PubMed ID: 23859925 [TBL] [Abstract][Full Text] [Related]
18. Dynamic Exercise Elicits Dissociated Changes Between Tissue Oxygenation and Cerebral Blood Flow in the Prefrontal Cortex: A Study Using NIRS and PET. Hiura M; Nariai T; Takahashi K; Muta A; Sakata M; Ishibashi K; Toyohara J; Wagatsuma K; Tago T; Ishii K; Maehara T Adv Exp Med Biol; 2018; 1072():269-274. PubMed ID: 30178357 [TBL] [Abstract][Full Text] [Related]
19. The correlation between brain near-infrared spectroscopy and cerebral blood flow in piglets with intracranial hypertension. Alosh H; Ramirez A; Mink R J Appl Physiol (1985); 2016 Jul; 121(1):255-60. PubMed ID: 27283915 [TBL] [Abstract][Full Text] [Related]
20. [Detection of changes in cerebral blood flow and cerebrovascular autoregulation by near-infrared spectroscopy in newborn piglets]. Huang HJ; Shao XM; Cheng GQ Zhonghua Er Ke Za Zhi; 2007 May; 45(5):349-53. PubMed ID: 17697620 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]