BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 12953909)

  • 1. Segmentation-free statistical image reconstruction for polyenergetic x-ray computed tomography with experimental validation.
    Idris A E; Fessler JA
    Phys Med Biol; 2003 Aug; 48(15):2453-77. PubMed ID: 12953909
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Statistical image reconstruction for polyenergetic X-ray computed tomography.
    Elbakri IA; Fessler JA
    IEEE Trans Med Imaging; 2002 Feb; 21(2):89-99. PubMed ID: 11929108
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quantitative image-based spectral reconstruction for computed tomography.
    Heismann B; Balda M
    Med Phys; 2009 Oct; 36(10):4471-85. PubMed ID: 19928078
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An efficient polyenergetic SART (pSART) reconstruction algorithm for quantitative myocardial CT perfusion.
    Lin Y; Samei E
    Med Phys; 2014 Feb; 41(2):021911. PubMed ID: 24506632
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Accurate measurement of bone mineral density using clinical CT imaging with single energy beam spectral intensity correction.
    Zhang J; Yan CH; Chui CK; Ong SH
    IEEE Trans Med Imaging; 2010 Jul; 29(7):1382-9. PubMed ID: 20236874
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Polyquant CT: direct electron and mass density reconstruction from a single polyenergetic source.
    Mason JH; Perelli A; Nailon WH; Davies ME
    Phys Med Biol; 2017 Nov; 62(22):8739-8762. PubMed ID: 28980976
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A full-spectral Bayesian reconstruction approach based on the material decomposition model applied in dual-energy computed tomography.
    Cai C; Rodet T; Legoupil S; Mohammad-Djafari A
    Med Phys; 2013 Nov; 40(11):111916. PubMed ID: 24320449
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Correction of photon attenuation and collimator response for a body-contouring SPECT/CT imaging system.
    Seo Y; Wong KH; Sun M; Franc BL; Hawkins RA; Hasegawa BH
    J Nucl Med; 2005 May; 46(5):868-77. PubMed ID: 15872362
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Empirical beam hardening correction (EBHC) for CT.
    Kyriakou Y; Meyer E; Prell D; Kachelriess M
    Med Phys; 2010 Oct; 37(10):5179-87. PubMed ID: 21089751
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fast polyenergetic forward projection for image formation using OpenCL on a heterogeneous parallel computing platform.
    Zhou L; Clifford Chao KS; Chang J
    Med Phys; 2012 Nov; 39(11):6745-56. PubMed ID: 23127068
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Simplified Statistical Image Reconstruction for X-ray CT With Beam-Hardening Artifact Compensation.
    Abella M; Martinez C; Desco M; Vaquero JJ; Fessler JA
    IEEE Trans Med Imaging; 2020 Jan; 39(1):111-118. PubMed ID: 31180844
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A computed tomography implementation of multiple-image radiography.
    Brankov JG; Wernick MN; Yang Y; Li J; Muehleman C; Zhong Z; Anastasio MA
    Med Phys; 2006 Feb; 33(2):278-89. PubMed ID: 16532932
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An iterative three-dimensional electron density imaging algorithm using uncollimated compton scattered x rays from a polyenergetic primary pencil beam.
    Van Uytven E; Pistorius S; Gordon R
    Med Phys; 2007 Jan; 34(1):256-65. PubMed ID: 17278511
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Prospects for in vivo estimation of photon linear attenuation coefficients using postprocessing dual-energy CT imaging on a commercial scanner: comparison of analytic and polyenergetic statistical reconstruction algorithms.
    Evans JD; Whiting BR; O'Sullivan JA; Politte DG; Klahr PH; Yu Y; Williamson JF
    Med Phys; 2013 Dec; 40(12):121914. PubMed ID: 24320525
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparative performance assessment of beam hardening correction algorithms applied on simulated data sets.
    Cao W; Sun T; Fardell G; Price B; Dewulf W
    J Microsc; 2018 Dec; 272(3):229-241. PubMed ID: 30088275
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Statistical reconstruction for x-ray computed tomography using energy-integrating detectors.
    Lasio GM; Whiting BR; Williamson JF
    Phys Med Biol; 2007 Apr; 52(8):2247-66. PubMed ID: 17404467
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dynamic iterative beam hardening correction (DIBHC) in myocardial perfusion imaging using contrast-enhanced computed tomography.
    Stenner P; Schmidt B; Allmendinger T; Flohr T; Kachelrie M
    Invest Radiol; 2010 Jun; 45(6):314-23. PubMed ID: 20440212
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A density distance augmented Chan-Vese active contour for CT bone segmentation.
    Truc PT; Lee S; Kim TS
    Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():482-5. PubMed ID: 19162698
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evaluation of the quantitative capability of a home-made cone-beam micro computed tomography system.
    Chueh HS; Tsai WK; Fu HM; Chen JC
    Comput Med Imaging Graph; 2006; 30(6-7):349-55. PubMed ID: 17067784
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Performance Evaluation of Material Decomposition With Rapid-Kilovoltage-Switching Dual-Energy CT and Implications for Assessing Bone Mineral Density.
    Wait JM; Cody D; Jones AK; Rong J; Baladandayuthapani V; Kappadath SC
    AJR Am J Roentgenol; 2015 Jun; 204(6):1234-41. PubMed ID: 26001233
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.