These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 12953980)

  • 1. Factors which may increase stresses at the pin-bone interface in external fixation: a finite element analysis study.
    Oni OO; Capper M; Soutis C
    Afr J Med Med Sci; 1999; 28(1-2):13-5. PubMed ID: 12953980
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biomechanical Analysis of Unilateral External Skeletal Fixators Combined with IM-Pin and Without IM-Pin Using Finite-Element Method.
    Radke H; Aron DN; Applewhite A; Zhang G
    Vet Surg; 2006 Jan; 35(1):15-23. PubMed ID: 16409404
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Increasing bending strength of tibial locking screws: mechanical tests and finite element analyses.
    Chao CK; Hsu CC; Wang JL; Lin J
    Clin Biomech (Bristol); 2007 Jan; 22(1):59-66. PubMed ID: 16959388
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evaluation of strength at the acrylic-pin interface for variably treated external skeletal fixator pins.
    Brad Case J; Egger EL
    Vet Surg; 2011 Feb; 40(2):211-5. PubMed ID: 21204858
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mechanical tests and finite element models for bone holding power of tibial locking screws.
    Hou SM; Hsu CC; Wang JL; Chao CK; Lin J
    Clin Biomech (Bristol); 2004 Aug; 19(7):738-45. PubMed ID: 15288461
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bone properties affect loosening of half-pin external fixators at the pin-bone interface.
    Donaldson FE; Pankaj P; Simpson AH
    Injury; 2012 Oct; 43(10):1764-70. PubMed ID: 22841532
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of low-modulus coatings on pin-bone contact stresses in external fixation.
    Manley MT; Hurst L; Hindes R; Dee R; Chiang FP
    J Orthop Res; 1984; 2(4):385-92. PubMed ID: 6527164
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Parametric analyses of pin-bone stresses in external fracture fixation devices.
    Huiskes R; Chao EY; Crippen TE
    J Orthop Res; 1985; 3(3):341-9. PubMed ID: 4032105
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The influence of implant diameter and length on stress distribution of osseointegrated implants related to crestal bone geometry: a three-dimensional finite element analysis.
    Baggi L; Cappelloni I; Di Girolamo M; Maceri F; Vairo G
    J Prosthet Dent; 2008 Dec; 100(6):422-31. PubMed ID: 19033026
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A computational evaluation of the effect of intramedullary nail material properties on the stabilization of simulated femoral shaft fractures.
    Perez A; Mahar A; Negus C; Newton P; Impelluso T
    Med Eng Phys; 2008 Jul; 30(6):755-60. PubMed ID: 17905637
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Porcelain versus composite inlays/onlays: effects of mechanical loads on stress distribution, adhesion, and crown flexure.
    Magne P; Belser UC
    Int J Periodontics Restorative Dent; 2003 Dec; 23(6):543-55. PubMed ID: 14703758
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Guidelines for external fixation frame rigidity and stresses.
    Huiskes R; Chao EY
    J Orthop Res; 1986; 4(1):68-75. PubMed ID: 3950810
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biomechanical comparison of flexible stainless steel and titanium nails with external fixation using a femur fracture model.
    Mani US; Sabatino CT; Sabharwal S; Svach DJ; Suslak A; Behrens FF
    J Pediatr Orthop; 2006; 26(2):182-7. PubMed ID: 16557131
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Titanium alloy pins versus stainless steel pins in external fixation at the wrist: a randomized prospective study.
    Pieske O; Geleng P; Zaspel J; Piltz S
    J Trauma; 2008 May; 64(5):1275-80. PubMed ID: 18469650
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Numeric simulation of time-dependent remodeling of bone around loaded oral implants.
    Eser A; Tonuk E; Akca K; Cehreli MC
    Int J Oral Maxillofac Implants; 2009; 24(4):597-608. PubMed ID: 19885399
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structure and mechanical properties of Cresco-Ti laser-welded joints and stress analyses using finite element models of fixed distal extension and fixed partial prosthetic designs.
    Uysal H; Kurtoglu C; Gurbuz R; Tutuncu N
    J Prosthet Dent; 2005 Mar; 93(3):235-44. PubMed ID: 15775924
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Three-dimensional finite element analysis of strength and adhesion of composite resin versus ceramic inlays in molars.
    Dejak B; Mlotkowski A
    J Prosthet Dent; 2008 Feb; 99(2):131-40. PubMed ID: 18262014
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bending characteristics of polymethylmethacrylate columns, connecting bars of carbon fiber, titanium, and stainless steel used in external skeletal fixation and an acrylic interface.
    Amsellem PM; Egger EL; Wilson DL
    Vet Surg; 2010 Jul; 39(5):631-7. PubMed ID: 20636558
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of a thin HA coating on the stress/strain distribution in bone around dental implants using three-dimensional finite element analysis.
    Aoki H; Ozeki K; Ohtani Y; Fukui Y; Asaoka T
    Biomed Mater Eng; 2006; 16(3):157-69. PubMed ID: 16518015
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biomechanical aspects of marginal bone resorption around osseointegrated implants: considerations based on a three-dimensional finite element analysis.
    Kitamura E; Stegaroiu R; Nomura S; Miyakawa O
    Clin Oral Implants Res; 2004 Aug; 15(4):401-12. PubMed ID: 15248874
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.