These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 12954782)

  • 21. Geometry of the DNA Substrates in Cre-loxP Site-Specific Recombination.
    Guo F; Gopaul DN; Van Duyne GD
    J Biomol Struct Dyn; 2000; 17 Suppl 1():141-6. PubMed ID: 22607417
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Identification of Cre residues involved in synapsis, isomerization, and catalysis.
    Lee L; Sadowski PD
    J Biol Chem; 2003 Sep; 278(38):36905-15. PubMed ID: 12851389
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Communication between accessory factors and the Cre recombinase at hybrid psi-loxP sites.
    Akopian A; Gourlay S; James H; Colloms SD
    J Mol Biol; 2006 Apr; 357(5):1394-408. PubMed ID: 16487975
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Symmetric DNA sites are functionally asymmetric within Flp and Cre site-specific DNA recombination synapses.
    Grainge I; Pathania S; Vologodskii A; Harshey RM; Jayaram M
    J Mol Biol; 2002 Jul; 320(3):515-27. PubMed ID: 12096907
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A structural view of cre-loxp site-specific recombination.
    Van Duyne GD
    Annu Rev Biophys Biomol Struct; 2001; 30():87-104. PubMed ID: 11340053
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Principles of site-specific recombinase (SSR) technology.
    Bucholtz F
    J Vis Exp; 2008 May; (15):. PubMed ID: 19066587
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Role of nucleotide sequences of loxP spacer region in Cre-mediated recombination.
    Lee G; Saito I
    Gene; 1998 Aug; 216(1):55-65. PubMed ID: 9714735
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Restoration of catalytic functions in Cre recombinase mutants by electrostatic compensation between active site and DNA substrate.
    Kachroo AH; Ma CH; Rowley PA; Maciaszek AD; Guga P; Jayaram M
    Nucleic Acids Res; 2010 Oct; 38(19):6589-601. PubMed ID: 20511594
    [TBL] [Abstract][Full Text] [Related]  

  • 29. NMR structure of the amino-terminal domain of the lambda integrase protein in complex with DNA: immobilization of a flexible tail facilitates beta-sheet recognition of the major groove.
    Fadeev EA; Sam MD; Clubb RT
    J Mol Biol; 2009 May; 388(4):682-90. PubMed ID: 19324050
    [TBL] [Abstract][Full Text] [Related]  

  • 30. DNA topology and geometry in Flp and Cre recombination.
    Vetcher AA; Lushnikov AY; Navarra-Madsen J; Scharein RG; Lyubchenko YL; Darcy IK; Levene SD
    J Mol Biol; 2006 Apr; 357(4):1089-104. PubMed ID: 16483600
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Characterization of Cre-loxP interaction in the major groove: hint for structural distortion of mutant Cre and possible strategy for HIV-1 therapy.
    Kim ST; Kim GW; Lee YS; Park JS
    J Cell Biochem; 2001; 80(3):321-7. PubMed ID: 11135361
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Chimeras of the Flp and Cre recombinases: tests of the mode of cleavage by Flp and Cre.
    Shaikh AC; Sadowski PD
    J Mol Biol; 2000 Sep; 302(1):27-48. PubMed ID: 10964559
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Mapping the λ Integrase bridges in the nucleoprotein Holliday junction intermediates of viral integrative and excisive recombination.
    Tong W; Warren D; Seah NE; Laxmikanthan G; Van Duyne GD; Landy A
    Proc Natl Acad Sci U S A; 2014 Aug; 111(34):12366-71. PubMed ID: 25114247
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Mechanism of strand cleavage and exchange in the Cre-lox site-specific recombination system.
    Hoess RH; Abremski K
    J Mol Biol; 1985 Feb; 181(3):351-62. PubMed ID: 3856690
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Directed evolution of the site specificity of Cre recombinase.
    Santoro SW; Schultz PG
    Proc Natl Acad Sci U S A; 2002 Apr; 99(7):4185-90. PubMed ID: 11904359
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Dynamics in Cre-loxP site-specific recombination.
    Foster MP; Benedek MJ; Billings TD; Montgomery JS
    Curr Opin Struct Biol; 2024 Oct; 88():102878. PubMed ID: 39029281
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Peptide trapping of the Holliday junction intermediate in Cre-loxP site-specific recombination.
    Ghosh K; Lau CK; Guo F; Segall AM; Van Duyne GD
    J Biol Chem; 2005 Mar; 280(9):8290-9. PubMed ID: 15591069
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Redesign of the monomer-monomer interface of Cre recombinase yields an obligate heterotetrameric complex.
    Zhang C; Myers CA; Qi Z; Mitra RD; Corbo JC; Havranek JJ
    Nucleic Acids Res; 2015 Oct; 43(18):9076-85. PubMed ID: 26365240
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Loop-closure kinetics reveal a stable, right-handed DNA intermediate in Cre recombination.
    Shoura MJ; Giovan SM; Vetcher AA; Ziraldo R; Hanke A; Levene SD
    Nucleic Acids Res; 2020 May; 48(8):4371-4381. PubMed ID: 32182357
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Determinants of product topology in a hybrid Cre-Tn3 resolvase site-specific recombination system.
    Kilbride EA; Burke ME; Boocock MR; Stark WM
    J Mol Biol; 2006 Jan; 355(2):185-95. PubMed ID: 16303133
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.