BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

274 related articles for article (PubMed ID: 12955310)

  • 1. Xylose and some non-sugar carbon sources cause catabolite repression in Saccharomyces cerevisiae.
    Belinchón MM; Gancedo JM
    Arch Microbiol; 2003 Oct; 180(4):293-7. PubMed ID: 12955310
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Engineering of carbon catabolite repression in recombinant xylose fermenting Saccharomyces cerevisiae.
    Roca C; Haack MB; Olsson L
    Appl Microbiol Biotechnol; 2004 Feb; 63(5):578-83. PubMed ID: 12925863
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Control of Saccharomyces cerevisiae carboxypeptidase S (CPS1) gene expression under nutrient limitation.
    Bordallo J; Suárez-Rendueles P
    Yeast; 1993 Apr; 9(4):339-49. PubMed ID: 8511964
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Proteolytic catabolite inactivation in Saccharomyces cerevisiae.
    Holzer H
    Revis Biol Celular; 1989; 21():305-19. PubMed ID: 2561496
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The glucose-6-phosphate-isomerase reaction is essential for normal glucose repression in Saccharomyces cerevisiae.
    Sierkstra LN; Silljé HH; Verbakel JM; Verrips CT
    Eur J Biochem; 1993 May; 214(1):121-7. PubMed ID: 8508783
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Global gene expression differences associated with changes in glycolytic flux and growth rate in Escherichia coli during the fermentation of glucose and xylose.
    Gonzalez R; Tao H; Shanmugam KT; York SW; Ingram LO
    Biotechnol Prog; 2002; 18(1):6-20. PubMed ID: 11822894
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Catabolite repression mutants of Saccharomyces cerevisiae show altered fermentative metabolism as well as cell cycle behavior in glucose-limited chemostat cultures.
    Aon MA; Cortassa S
    Biotechnol Bioeng; 1998 Jul; 59(2):203-13. PubMed ID: 10099331
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Carbon fluxes of xylose-consuming Saccharomyces cerevisiae strains are affected differently by NADH and NADPH usage in HMF reduction.
    Almeida JR; Bertilsson M; Hahn-Hägerdal B; Lidén G; Gorwa-Grauslund MF
    Appl Microbiol Biotechnol; 2009 Sep; 84(4):751-61. PubMed ID: 19506862
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ethanol fermentation on glucose/xylose mixture by co-cultivation of restricted glucose catabolite repressed mutants of Pichia stipitis with respiratory deficient mutants of Saccharomyces cerevisiae.
    Kordowska-Wiater M; Targoński Z
    Acta Microbiol Pol; 2002; 51(4):345-52. PubMed ID: 12708823
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Genetics of carbon catabolite repression in Saccharomycess cerevisiae: genes involved in the derepression process.
    Zimmermann FK; Kaufmann I; Rasenberger H; Haubetamann P
    Mol Gen Genet; 1977 Feb; 151(1):95-103. PubMed ID: 194140
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enhancement of xylose uptake in 2-deoxyglucose tolerant mutant of Saccharomyces cerevisiae.
    Kahar P; Taku K; Tanaka S
    J Biosci Bioeng; 2011 May; 111(5):557-63. PubMed ID: 21257343
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Xylose chemostat isolates of Saccharomyces cerevisiae show altered metabolite and enzyme levels compared with xylose, glucose, and ethanol metabolism of the original strain.
    Pitkänen JP; Rintala E; Aristidou A; Ruohonen L; Penttilä M
    Appl Microbiol Biotechnol; 2005 Jun; 67(6):827-37. PubMed ID: 15630585
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Crabtree-negative characteristics of recombinant xylose-utilizing Saccharomyces cerevisiae.
    Souto-Maior AM; Runquist D; Hahn-Hägerdal B
    J Biotechnol; 2009 Aug; 143(2):119-23. PubMed ID: 19560495
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Regulation of glycolytic enzymes and the Crabtree effect in galactose-limited continuous cultures of Saccharomyces cerevisiae.
    Sierkstra LN; Nouwen NP; Verbakel JM; Verrips CT
    Yeast; 1993 Jul; 9(7):787-95. PubMed ID: 8368013
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Kinetics of growth and ethanol production on different carbon substrates using genetically engineered xylose-fermenting yeast.
    Govindaswamy S; Vane LM
    Bioresour Technol; 2007 Feb; 98(3):677-85. PubMed ID: 16563746
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The level of glucose-6-phosphate dehydrogenase activity strongly influences xylose fermentation and inhibitor sensitivity in recombinant Saccharomyces cerevisiae strains.
    Jeppsson M; Johansson B; Jensen PR; Hahn-Hägerdal B; Gorwa-Grauslund MF
    Yeast; 2003 Nov; 20(15):1263-72. PubMed ID: 14618564
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The effect of CreA in glucose and xylose catabolism in Aspergillus nidulans.
    Prathumpai W; McIntyre M; Nielsen J
    Appl Microbiol Biotechnol; 2004 Feb; 63(6):748-53. PubMed ID: 12920487
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterization of glucose transport mutants of Saccharomyces cerevisiae during a nutritional upshift reveals a correlation between metabolite levels and glycolytic flux.
    Bosch D; Johansson M; Ferndahl C; Franzén CJ; Larsson C; Gustafsson L
    FEMS Yeast Res; 2008 Feb; 8(1):10-25. PubMed ID: 18042231
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Isolation and characterization of carbon catabolite repression mutants in Saccharomyces cerevisiae.
    Donnini C; Goffrini P; Rossi C; Ferrero I
    Microbiologica; 1990 Oct; 13(4):283-95. PubMed ID: 2087199
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Control of xylose consumption by xylose transport in recombinant Saccharomyces cerevisiae.
    Gárdonyi M; Jeppsson M; Lidén G; Gorwa-Grauslund MF; Hahn-Hägerdal B
    Biotechnol Bioeng; 2003 Jun; 82(7):818-24. PubMed ID: 12701148
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.