These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

225 related articles for article (PubMed ID: 12955379)

  • 1. Fos-like immunoreactivity in auditory and nonauditory brain structures of hamsters previously exposed to intense sound.
    Zhang JS; Kaltenbach JA; Wang J; Kim SA
    Exp Brain Res; 2003 Dec; 153(4):655-60. PubMed ID: 12955379
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Expression of c-fos in auditory and non-auditory brain regions of the gerbil after manipulations that induce tinnitus.
    Wallhäusser-Franke E; Mahlke C; Oliva R; Braun S; Wenz G; Langner G
    Exp Brain Res; 2003 Dec; 153(4):649-54. PubMed ID: 14508632
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Psychophysical and neural correlates of noised-induced tinnitus in animals: Intra- and inter-auditory and non-auditory brain structure studies.
    Zhang J; Luo H; Pace E; Li L; Liu B
    Hear Res; 2016 Apr; 334():7-19. PubMed ID: 26299842
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Activity in the dorsal cochlear nucleus of hamsters previously tested for tinnitus following intense tone exposure.
    Kaltenbach JA; Zacharek MA; Zhang J; Frederick S
    Neurosci Lett; 2004 Jan; 355(1-2):121-5. PubMed ID: 14729250
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Neuronal connectivity and interactions between the auditory and limbic systems. Effects of noise and tinnitus.
    Kraus KS; Canlon B
    Hear Res; 2012 Jun; 288(1-2):34-46. PubMed ID: 22440225
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evidence for tinnitus-related plasticity in the auditory and limbic system, demonstrated by arg3.1 and c-fos immunocytochemistry.
    Mahlke C; Wallhäusser-Franke E
    Hear Res; 2004 Sep; 195(1-2):17-34. PubMed ID: 15350276
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Changes in [14C]-2-deoxyglucose uptake in the auditory pathway of hamsters previously exposed to intense sound.
    Zhang JS; Kaltenbach JA; Wang J; Bronchti G
    Hear Res; 2003 Nov; 185(1-2):13-21. PubMed ID: 14599688
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Central neural activity in rats with tinnitus evaluated with manganese-enhanced magnetic resonance imaging (MEMRI).
    Brozoski TJ; Ciobanu L; Bauer CA
    Hear Res; 2007 Jun; 228(1-2):168-79. PubMed ID: 17382501
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tinnitus behavior and hearing function correlate with the reciprocal expression patterns of BDNF and Arg3.1/arc in auditory neurons following acoustic trauma.
    Tan J; Rüttiger L; Panford-Walsh R; Singer W; Schulze H; Kilian SB; Hadjab S; Zimmermann U; Köpschall I; Rohbock K; Knipper M
    Neuroscience; 2007 Mar; 145(2):715-26. PubMed ID: 17275194
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dynamic Changes of Functional Neuronal Activities Between the Auditory Pathway and Limbic Systems Contribute to Noise-Induced Tinnitus with a Normal Audiogram.
    Qu T; Qi Y; Yu S; Du Z; Wei W; Cai A; Wang J; Nie B; Liu K; Gong S
    Neuroscience; 2019 Jun; 408():31-45. PubMed ID: 30946875
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hyperactivity in the dorsal cochlear nucleus after intense sound exposure and its resemblance to tone-evoked activity: a physiological model for tinnitus.
    Kaltenbach JA; Afman CE
    Hear Res; 2000 Feb; 140(1-2):165-72. PubMed ID: 10675644
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tinnitus: Maladaptive auditory-somatosensory plasticity.
    Wu C; Stefanescu RA; Martel DT; Shore SE
    Hear Res; 2016 Apr; 334():20-9. PubMed ID: 26074307
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The dissimilar time course of temporary threshold shifts and reduction of inhibition in the inferior colliculus following intense sound exposure.
    Heeringa AN; van Dijk P
    Hear Res; 2014 Jun; 312():38-47. PubMed ID: 24650953
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Maladaptive plasticity in tinnitus--triggers, mechanisms and treatment.
    Shore SE; Roberts LE; Langguth B
    Nat Rev Neurol; 2016 Mar; 12(3):150-60. PubMed ID: 26868680
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Playback of 22-kHz and 50-kHz ultrasonic vocalizations induces differential c-fos expression in rat brain.
    Sadananda M; Wöhr M; Schwarting RK
    Neurosci Lett; 2008 Apr; 435(1):17-23. PubMed ID: 18328625
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sleep research in space: expression of immediate early genes in forebrain structures of rats during the nasa neurolab mission (STS-90).
    Centini C; Pompeiano O
    Arch Ital Biol; 2007 May; 145(2):117-50. PubMed ID: 17639784
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tinnitus in hamsters following exposure to intense sound.
    Heffner HE; Harrington IA
    Hear Res; 2002 Aug; 170(1-2):83-95. PubMed ID: 12208543
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tuning out the noise: limbic-auditory interactions in tinnitus.
    Rauschecker JP; Leaver AM; Mühlau M
    Neuron; 2010 Jun; 66(6):819-26. PubMed ID: 20620868
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Pathways involved in somatosensory electrical modulation of dorsal cochlear nucleus activity.
    Zhang J; Guan Z
    Brain Res; 2007 Dec; 1184():121-31. PubMed ID: 17964553
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The role of the insula cortex in the final common pathway for tinnitus: experience using ultra-high-frequency therapy.
    Lenhardt ML; Shulman A; Goldstein BA
    Int Tinnitus J; 2008; 14(1):13-6. PubMed ID: 18616081
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.