These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 12955436)

  • 21. Sodium D-glucose cotransport in the gill of marine mussels: studies with intact tissue and brush-border membrane vesicles.
    Pajor AM; Moon DA; Wright SH
    J Membr Biol; 1989 Jan; 107(1):77-88. PubMed ID: 2921769
    [TBL] [Abstract][Full Text] [Related]  

  • 22. [D-glucose reabsorption activity of fetal kidney (by using brush border membrane vesicles of proximal tubule)].
    Iioka H; Moriyama I; Itoh K; Hino K; Okamura Y; Itani Y; Kato Y; Ibaragi T; Ichijo M
    Nihon Sanka Fujinka Gakkai Zasshi; 1987 Jul; 39(7):1037-41. PubMed ID: 3611877
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Rat kidney MAP17 induces cotransport of Na-mannose and Na-glucose in Xenopus laevis oocytes.
    Blasco T; Aramayona JJ; Alcalde AI; Catalán J; Sarasa M; Sorribas V
    Am J Physiol Renal Physiol; 2003 Oct; 285(4):F799-810. PubMed ID: 12812916
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Synthesis of phlorizin derivatives and their inhibitory effect on the renal sodium/D-glucose cotransport system.
    Lin JT; Hahn KD; Kinne R
    Biochim Biophys Acta; 1982 Dec; 693(2):379-88. PubMed ID: 7159584
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Comparison of a Na+/D-glucose cotransporter from rat intestine expressed in oocytes of Xenopus laevis with the endogenous cotransporter.
    Weber WM; Püschel B; Steffgen J; Koepsell H; Schwarz W
    Biochim Biophys Acta; 1991 Mar; 1063(1):73-80. PubMed ID: 2015263
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Na+-dependent D-glucose transport in brush-border membrane vesicles of chick small intestine: relation to Na+/H+ exchange and H+ permeability.
    Fuchs R; Graf J; Peterlik M
    Ann N Y Acad Sci; 1985; 456():105-7. PubMed ID: 3004285
    [No Abstract]   [Full Text] [Related]  

  • 27. Characterization of the fetal glucose transporter in rabbit kidney. Comparison with the adult brush border electrogenic Na+-glucose symporter.
    Beck JC; Lipkowitz MS; Abramson RG
    J Clin Invest; 1988 Aug; 82(2):379-87. PubMed ID: 3403709
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Partial purification of hog kidney sodium-D-glucose cotransport system by affinity chromatography on a phlorizin polymer.
    Lin JT; Da Cruz ME; Riedel S; Kinne R
    Biochim Biophys Acta; 1981 Jan; 640(1):43-54. PubMed ID: 7194113
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Functional asymmetry of the human Na+/glucose transporter (hSGLT1) in bacterial membrane vesicles.
    Quick M; Tomasevic J; Wright EM
    Biochemistry; 2003 Aug; 42(30):9147-52. PubMed ID: 12885248
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Different temperature sensitivity and cation specificity of two distinct D-glucose/Na+ cotransport systems in the intestinal brush-border membrane.
    Brot-Laroche E; Serrano MA; Delhomme B; Alvarado F
    Ann N Y Acad Sci; 1985; 456():47-50. PubMed ID: 3867313
    [No Abstract]   [Full Text] [Related]  

  • 31. Effect of Ca on Na-D-glucose cotransport across isolated renal brush-border membranes.
    Lin JT; Xu ZJ; Lovelace C; Windhager EE; Heinz E
    Am J Physiol; 1989 Jul; 257(1 Pt 2):F126-36. PubMed ID: 2750917
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Renal Na(+)-phosphate cotransport in X-linked Hyp mice responds appropriately to Na+ gradient, membrane potential, and pH.
    Harvey N; Tenenhouse HS
    J Bone Miner Res; 1992 May; 7(5):563-71. PubMed ID: 1319668
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A simple liposomal system to reconstitute and assay highly efficient Na+/D-glucose cotransport from kidney brush-border membranes.
    Ducis I; Koepsell H
    Biochim Biophys Acta; 1983 Apr; 730(1):119-29. PubMed ID: 6681984
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Kinetics of Na+-dependent D-glucose transport.
    Hopfer U
    J Supramol Struct; 1977; 7(1):1-13. PubMed ID: 604695
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Biochemical properties of the Na-D-glucose cotransport system in renal brush-border membranes.
    Lin JT
    Ann N Y Acad Sci; 1985; 456():97-100. PubMed ID: 3867315
    [No Abstract]   [Full Text] [Related]  

  • 36. Epidermal growth factor up-regulates sodium-glucose cotransport in enterocyte models in the presence of cholera toxin.
    Mehta DI; Horváth K; Chanasongcram S; Hill ID; Panigrahi P
    JPEN J Parenter Enteral Nutr; 1997; 21(4):185-91. PubMed ID: 9252942
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Human placental brush-border membrane Na(+)-pantothenate cotransport.
    Grassl SM
    J Biol Chem; 1992 Nov; 267(32):22902-6. PubMed ID: 1429639
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Expression of Na+-D-glucose cotransporter in brush-border membrane of the chicken intestine.
    Garriga C; Rovira N; Moretó M; Planas JM
    Am J Physiol; 1999 Feb; 276(2):R627-31. PubMed ID: 9950947
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Renal sodium-D-glucose cotransport system. Involvement of tyrosine residues in sodium-transporter interaction.
    Lin JT; Stroh A; Kinne R
    Biochim Biophys Acta; 1982 Nov; 692(2):210-7. PubMed ID: 6890850
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Characteristics of renal Na(+)-D-glucose cotransport in the skate (Raja erinacea) and shark (Squalus acanthias).
    Kipp H; Kinne-Saffran E; Bevan C; Kinne RK
    Am J Physiol; 1997 Jul; 273(1 Pt 2):R134-42. PubMed ID: 9249542
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.