BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 12955514)

  • 1. Isoosmotic shrinkage by self-stimulated outward Na-K-Cl cotransport in quail erythrocytes.
    Lou JM; Garay RP; Gimenez I; Escanero JF; Alda JO
    Pflugers Arch; 2003 Oct; 447(1):64-70. PubMed ID: 12955514
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Asymmetry of Na-K-Cl cotransport in human erythrocytes.
    Kracke GR; Anatra MA; Dunham PB
    Am J Physiol; 1988 Feb; 254(2 Pt 1):C243-50. PubMed ID: 3348364
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Volume-dependent regulation of ion carriers in human and rat erythrocytes: role of cytoskeleton and protein phosphorylation.
    Orlov SN; Kuznetsov SR; Kolosova IA; Aksentsev SL; Konev SV
    Ross Fiziol Zh Im I M Sechenova; 1997; 83(5-6):119-47. PubMed ID: 13677670
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The Na+/K+/Cl- cotransport in C6 glioma cells. Properties and role in volume regulation.
    Chassande O; Frelin C; Farahifar D; Jean T; Lazdunski M
    Eur J Biochem; 1988 Feb; 171(3):425-33. PubMed ID: 3345741
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The erythrocyte Na,K,Cl cotransporter and its circulating inhibitor in Dahl salt-sensitive rats.
    Alvarez-Guerra M; Nazaret C; Garay RP
    J Hypertens; 1998 Oct; 16(10):1499-504. PubMed ID: 9814622
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Na(+)-K(+)-2Cl- cotransport, Na+/H+ exchange, and cell volume in ferret erythrocytes.
    Mairbäurl H; Herth C
    Am J Physiol; 1996 Nov; 271(5 Pt 1):C1603-11. PubMed ID: 8944644
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cl-dependent K transport in a pure population of volume-regulating human erythrocytes.
    O'Neill WC
    Am J Physiol; 1989 Apr; 256(4 Pt 1):C858-64. PubMed ID: 2705517
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bumetanide-sensitive ion fluxes in vascular smooth muscle cells: lack of functional Na+, K+, 2 Cl- cotransport.
    Orlov SN; Tremblay J; Hamet P
    J Membr Biol; 1996 Sep; 153(2):125-35. PubMed ID: 8703202
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Coordinate modulation of Na-K-2Cl cotransport and K-Cl cotransport by cell volume and chloride.
    Lytle C; McManus T
    Am J Physiol Cell Physiol; 2002 Nov; 283(5):C1422-31. PubMed ID: 12372803
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Lithium fluxes indicate presence of Na-Cl cotransport (NCC) in human lens epithelial cells.
    Lauf PK; Chimote AA; Adragna NC
    Cell Physiol Biochem; 2008; 21(5-6):335-46. PubMed ID: 18453742
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Demonstration of a [K+,Cl-]-cotransport system in human red cells by its sensitivity to [(dihydroindenyl)oxy]alkanoic acids: regulation of cell swelling and distinction from the bumetanide-sensitive [Na+,K+,Cl-]-cotransport system.
    Garay RP; Nazaret C; Hannaert PA; Cragoe EJ
    Mol Pharmacol; 1988 Jun; 33(6):696-701. PubMed ID: 3380083
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Volume-sensitive K transport in human erythrocytes.
    Kaji D
    J Gen Physiol; 1986 Dec; 88(6):719-38. PubMed ID: 3794638
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Kinetics and peculiarities of thermal inactivation of volume-induced Na+/H+ exchange, Na+,K+,2Cl- cotransport and K+,Cl- cotransport in rat erythrocytes.
    Orlov SN; Kolosova IA; Cragoe EJ; Gurlo TG; Mongin AA; Aksentsev SL; Konev SV
    Biochim Biophys Acta; 1993 Sep; 1151(2):186-92. PubMed ID: 8396975
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Correction for the adverse influence of sodium-potassium cotransport on apparent sodium-lithium countertransport activity in human erythrocytes.
    Hardman TC; Morrish Z; Patel M; Chalkley S; Noble MI
    J Pharmacol Toxicol Methods; 2002; 47(1):19-24. PubMed ID: 12387935
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Na+, K+, Cl-]-cotransport function and dysfunction in different forms of primary hypertension.
    Saitta MN; Hannaert PA; Rosati C; Diaz AS; Senn N; Garay RP
    Am J Hypertens; 1988 Jul; 1(3 Pt 3):60S-63S. PubMed ID: 3415811
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Outward Na+-K+-Cl- cotransport function in erythrocytes from essential hypertensives.
    de la Sierra A; Coca A; Aguilera MT; Urbano-Márquez A
    J Hum Hypertens; 1989 Feb; 3(1):1-8. PubMed ID: 2724269
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cell-volume-dependent vascular smooth muscle contraction: role of Na+, K+, 2Cl- cotransport, intracellular Cl- and L-type Ca2+ channels.
    Anfinogenova YJ; Baskakov MB; Kovalev IV; Kilin AA; Dulin NO; Orlov SN
    Pflugers Arch; 2004 Oct; 449(1):42-55. PubMed ID: 15293051
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Na+-K+ transport and volume of rat erythrocytes under dietary K+ deficiency.
    Duhm J; Göbel BO
    Am J Physiol; 1984 Jan; 246(1 Pt 1):C20-9. PubMed ID: 6320657
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Two different oxygen sensors regulate oxygen-sensitive K+ transport in crucian carp red blood cells.
    Berenbrink M; Völkel S; Koldkjaer P; Heisler N; Nikinmaa M
    J Physiol; 2006 Aug; 575(Pt 1):37-48. PubMed ID: 16763000
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Regulation of Na+-K+-2Cl- cotransport in turkey red cells: the role of oxygen tension and protein phosphorylation.
    Muzyamba MC; Cossins AR; Gibson JS
    J Physiol; 1999 Jun; 517 ( Pt 2)(Pt 2):421-9. PubMed ID: 10332092
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.