These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 12956286)

  • 1. High-resolution optical Doppler tomography for in vitro and in vivo fluid flow dynamics.
    Chang CJ; Hou KH
    Chang Gung Med J; 2003 Jun; 26(6):403-11. PubMed ID: 12956286
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quantifying labial blood flow using optical Doppler tomography.
    Otis LL; Piao D; Gibson CW; Zhu Q
    Oral Surg Oral Med Oral Pathol Oral Radiol Endod; 2004 Aug; 98(2):189-94. PubMed ID: 15316546
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Noninvasive imaging analysis of biological tissue associated with laser thermal injury.
    Chang CJ; Yu DY; Hsiao YC; Ho KH
    Biomed J; 2017 Apr; 40(2):106-112. PubMed ID: 28521901
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Noninvasive imaging of in vivo blood flow velocity using optical Doppler tomography.
    Chen Z; Milner TE; Srinivas S; Wang X; Malekafzali A; van Gemert MJ; Nelson JS
    Opt Lett; 1997 Jul; 22(14):1119-21. PubMed ID: 18185770
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Real-time in vivo blood-flow imaging by moving-scatterer-sensitive spectral-domain optical Doppler tomography.
    Ren H; Sun T; MacDonald DJ; Cobb MJ; Li X
    Opt Lett; 2006 Apr; 31(7):927-9. PubMed ID: 16599214
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optical Doppler tomographic imaging of fluid flow velocity in highly scattering media.
    Chen Z; Milner TE; Dave D; Nelson JS
    Opt Lett; 1997 Jan; 22(1):64-6. PubMed ID: 18183104
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparison of laser Doppler flowmeter and radioactive microspheres in measuring blood flow in pig skin flaps.
    Rival R; Bance M; Antonyshyn O; Phillips J; Pang CY
    Laryngoscope; 1995 Apr; 105(4 Pt 1):383-6. PubMed ID: 7715383
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Imaging blood flow in human port-wine stain in situ and in real time using optical Doppler tomography.
    Nelson JS; Kelly KM; Zhao Y; Chen Z
    Arch Dermatol; 2001 Jun; 137(6):741-4. PubMed ID: 11405763
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterization of fluid flow velocity by optical Doppler tomography.
    Wang XJ; Milner TE; Nelson JS
    Opt Lett; 1995 Jun; 20(11):1337-9. PubMed ID: 19859518
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Doppler optical coherence imaging of converging flow.
    Proskurin SG; He Y; Wang RK
    Phys Med Biol; 2004 Apr; 49(7):1265-76. PubMed ID: 15128204
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Absolute retinal blood flow measurement with a dual-beam Doppler optical coherence tomography.
    Dai C; Liu X; Zhang HF; Puliafito CA; Jiao S
    Invest Ophthalmol Vis Sci; 2013 Dec; 54(13):7998-8003. PubMed ID: 24222303
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ultra-high speed and ultra-high resolution spectral-domain optical coherence tomography and optical Doppler tomography in ophthalmology.
    Cense B; Chen TC; Nassif N; Pierce MC; Yun SH; Park BH; Bouma BE; Tearney GJ; de Boer JF
    Bull Soc Belge Ophtalmol; 2006; (302):123-32. PubMed ID: 17265794
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Impact of experimental conditions on noncontact laser recordings in microvascular studies.
    Mahé G; Durand S; Humeau-Heurtier A; Leftheriotis G; Abraham P
    Microcirculation; 2012 Nov; 19(8):669-75. PubMed ID: 22708898
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [2-dimensional mapping and retinal and papillary microcirculation using scanning laser Doppler flowmetry].
    Michelson G; Groh M; Langhans M; Schmauss B
    Klin Monbl Augenheilkd; 1995 Sep; 207(3):180-90. PubMed ID: 7474787
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Blood perfusion values of laser speckle contrast imaging and laser Doppler flowmetry: is a direct comparison possible?
    Binzoni T; Humeau-Heurtier A; Abraham P; Mahe G
    IEEE Trans Biomed Eng; 2013 May; 60(5):1259-65. PubMed ID: 23232361
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Measurement of a velocity field in microvessels using a high resolution PIV technique.
    Sugii Y; Nishio S; Okamoto K
    Ann N Y Acad Sci; 2002 Oct; 972():331-6. PubMed ID: 12496037
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Monitoring of drug and stimulation induced cerebral blood flow velocity changes in rat sensory cortex using spectral domain Doppler optical coherence tomography.
    Wang C; Yang Y; Ding Z; Meng J; Wang K; Yang W; Xu Y
    J Biomed Opt; 2011 Apr; 16(4):046001. PubMed ID: 21529070
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Microvascular blood flow monitoring with laser speckle contrast imaging using the generalized differences algorithm.
    Humeau-Heurtier A; Mahé G; Abraham P
    Microvasc Res; 2015 Mar; 98():54-61. PubMed ID: 25576743
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Optical Doppler tomography: imaging in vivo blood flow dynamics following pharmacological intervention and photodynamic therapy.
    Chen Z; Milner TE; Wang X; Srinivas S; Nelson JS
    Photochem Photobiol; 1998 Jan; 67(1):56-60. PubMed ID: 9477766
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Measuring red blood cell flow dynamics in a glass capillary using Doppler optical coherence tomography and Doppler amplitude optical coherence tomography.
    Moger J; Matcher SJ; Winlove CP; Shore A
    J Biomed Opt; 2004; 9(5):982-94. PubMed ID: 15447020
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.