These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 12956383)

  • 1. Volume growth initiated by point-to-point ultraviolet-laser direct writing in hybrid solgel glass for three-dimensional microfabrication.
    Yu W; Yuan XC
    Opt Lett; 2003 Sep; 28(17):1573-5. PubMed ID: 12956383
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Single-step fabrication of continuous surface relief micro-optical elements in hybrid sol-gel glass by laser direct writing.
    Yu W; Yuan X; Ngo N; Que W; Cheong W; Koudriachov V
    Opt Express; 2002 May; 10(10):443-8. PubMed ID: 19436379
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structuring light using solgel hybrid 3D-printed optics prepared by two-photon polymerization.
    Lightman S; Bin-Nun M; Bar G; Hurvitz G; Gvishi R
    Appl Opt; 2022 Feb; 61(6):1434-1439. PubMed ID: 35201027
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Self-processing solgel material for one-step fabrication of micrometer-period sinusoidal phase gratings using the Lloyd's mirror scheme.
    He M; Bu J; Yuan X; Niu H; Peng X
    Opt Lett; 2005 Oct; 30(20):2772-4. PubMed ID: 16252770
    [TBL] [Abstract][Full Text] [Related]  

  • 5. One-step transfer of diffractive structure from a designed pattern to a replica by use of a hybrid solgel film.
    Fu Y; Bryan N
    Opt Express; 2002 May; 10(10):436-42. PubMed ID: 19436378
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sample-inverted reflow technique for fabrication of a revolved-hyperboloid microlens array in hybrid solgel glass.
    He M; Yuan X; Bu J
    Opt Lett; 2004 Sep; 29(17):2004-6. PubMed ID: 15455761
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reflowed solgel spherical microlens for high-efficiency optical coupling between a laser diode and a single-mode fiber.
    He M; Yuan X; Bu J; Cheong WC; Moh KJ
    Appl Opt; 2005 Mar; 44(8):1469-73. PubMed ID: 15796247
    [TBL] [Abstract][Full Text] [Related]  

  • 8. UV induced controllable volume growth in hybrid sol-gel glass for fabrication of a refractive microlens by use of a grayscale mask.
    Yu W; Yuan X
    Opt Express; 2003 Sep; 11(18):2253-8. PubMed ID: 19466116
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Direct laser writing for micro-optical devices using a negative photoresist.
    Tsutsumi N; Hirota J; Kinashi K; Sakai W
    Opt Express; 2017 Dec; 25(25):31539-31551. PubMed ID: 29245828
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Femtosecond laser 3D micromachining: a powerful tool for the fabrication of microfluidic, optofluidic, and electrofluidic devices based on glass.
    Sugioka K; Xu J; Wu D; Hanada Y; Wang Z; Cheng Y; Midorikawa K
    Lab Chip; 2014 Sep; 14(18):3447-58. PubMed ID: 25012238
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fabrication of concave refractive microlens arrays in solgel glass by a simple proximity-effect-assisted reflow technique.
    He M; Yuan X; Bu J; Cheong WC
    Opt Lett; 2004 May; 29(9):1007-9. PubMed ID: 15143656
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Lithographic fabrication of diffractive optical elements in hybrid sol-gel glass on 3-D curved surfaces.
    Wang T; Yu W; Zhang D; Li C; Zhang H; Xu W; Xu Z; Liu H; Sun Q; Lu Z
    Opt Express; 2010 Nov; 18(24):25102-7. PubMed ID: 21164856
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Simple reflow technique for fabrication of a microlens array in solgel glass.
    He M; Yuan XC; Ngo NQ; Bu J; Kudryashov V
    Opt Lett; 2003 May; 28(9):731-3. PubMed ID: 12747722
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Femtosecond laser-induced microstructures in glasses and applications in micro-optics.
    Qiu J
    Chem Rec; 2004; 4(1):50-8. PubMed ID: 15057868
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Visible laser self-focusing in hybrid glass planar waveguides.
    Saravanamuttu K; Andrews MP
    Opt Lett; 2002 Aug; 27(15):1342-4. PubMed ID: 18026444
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Three-Dimensional Laser Printing of Macro-Scale Glass Objects at a Micro-Scale Resolution.
    Wang P; Chu W; Li W; Tan Y; Liu F; Wang M; Qi J; Lin J; Zhang F; Wang Z; Cheng Y
    Micromachines (Basel); 2019 Aug; 10(9):. PubMed ID: 31454927
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Binary-phase zone-plate arrays based on hybrid solgel glass.
    Rantala JT; Ayräs P; Levy R; Honkanen S; Descour MR; Peyghambarian N
    Opt Lett; 1998 Dec; 23(24):1939-41. PubMed ID: 18091962
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Direct laser writing of sub-50 nm nanofluidic channels buried in glass for three-dimensional micro-nanofluidic integration.
    Liao Y; Cheng Y; Liu C; Song J; He F; Shen Y; Chen D; Xu Z; Fan Z; Wei X; Sugioka K; Midorikawa K
    Lab Chip; 2013 Apr; 13(8):1626-31. PubMed ID: 23463190
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Focussing over the edge: adaptive subsurface laser fabrication up to the sample face.
    Salter PS; Booth MJ
    Opt Express; 2012 Aug; 20(18):19978-89. PubMed ID: 23037050
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cost-effective fabrication of microlenses on hybrid sol-gel glass with a high-energy beam-sensitive gray-scale mask.
    Yuan XC; Yu W; Ngo N; Cheong W
    Opt Express; 2002 Apr; 10(7):303-8. PubMed ID: 19436361
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.