BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 12956415)

  • 1. Redox regulation of cell growth and cell death.
    Kwon YW; Masutani H; Nakamura H; Ishii Y; Yodoi J
    Biol Chem; 2003 Jul; 384(7):991-6. PubMed ID: 12956415
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Glutathione and thioredoxin redox during differentiation in human colon epithelial (Caco-2) cells.
    Nkabyo YS; Ziegler TR; Gu LH; Watson WH; Jones DP
    Am J Physiol Gastrointest Liver Physiol; 2002 Dec; 283(6):G1352-9. PubMed ID: 12433666
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Thioredoxin and its role in toxicology.
    Watson WH; Yang X; Choi YE; Jones DP; Kehrer JP
    Toxicol Sci; 2004 Mar; 78(1):3-14. PubMed ID: 14691207
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Glutathione in liver diseases and hepatotoxicity.
    Yuan L; Kaplowitz N
    Mol Aspects Med; 2009; 30(1-2):29-41. PubMed ID: 18786561
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Thioredoxin modulates activator protein 1 (AP-1) activity and p27Kip1 degradation through direct interaction with Jab1.
    Hwang CY; Ryu YS; Chung MS; Kim KD; Park SS; Chae SK; Chae HZ; Kwon KS
    Oncogene; 2004 Nov; 23(55):8868-75. PubMed ID: 15480426
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Redox control of cellular function by thioredoxin; a new therapeutic direction in host defence.
    Nishinaka Y; Nakamura H; Masutani H; Yodoi J
    Arch Immunol Ther Exp (Warsz); 2001; 49(4):285-92. PubMed ID: 11726031
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The involvement of thioredoxin and thioredoxin binding protein-2 on cellular proliferation and aging process.
    Yoshida T; Nakamura H; Masutani H; Yodoi J
    Ann N Y Acad Sci; 2005 Dec; 1055():1-12. PubMed ID: 16387713
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Role of redox potential and reactive oxygen species in stress signaling.
    Adler V; Yin Z; Tew KD; Ronai Z
    Oncogene; 1999 Nov; 18(45):6104-11. PubMed ID: 10557101
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Redox regulation of stress signals: possible roles of dendritic stellate TRX producer cells (DST cell types).
    Yodoi J; Nakamura H; Masutani H
    Biol Chem; 2002; 383(3-4):585-90. PubMed ID: 12033447
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The thioredoxin system in retroviral infection and apoptosis.
    Masutani H; Ueda S; Yodoi J
    Cell Death Differ; 2005 Aug; 12 Suppl 1():991-8. PubMed ID: 15818395
    [TBL] [Abstract][Full Text] [Related]  

  • 11. L-gamma-Glutamyl-L-cysteinyl-glycine (glutathione; GSH) and GSH-related enzymes in the regulation of pro- and anti-inflammatory cytokines: a signaling transcriptional scenario for redox(y) immunologic sensor(s)?
    Haddad JJ; Harb HL
    Mol Immunol; 2005 May; 42(9):987-1014. PubMed ID: 15829290
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Redox and oxidant-mediated regulation of apoptosis signaling pathways: immuno-pharmaco-redox conception of oxidative siege versus cell death commitment.
    Haddad JJ
    Int Immunopharmacol; 2004 Apr; 4(4):475-93. PubMed ID: 15099526
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Critical role of oxidative stress and sustained JNK activation in aloe-emodin-mediated apoptotic cell death in human hepatoma cells.
    Lu GD; Shen HM; Chung MC; Ong CN
    Carcinogenesis; 2007 Sep; 28(9):1937-45. PubMed ID: 17698970
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Oxidative stress and apoptosis].
    Mathieu J; Chancerelle Y; Hérodin F; Multon E; Drouet M; Mestries JC; Kergonou JF
    Ann Pharm Fr; 1996; 54(5):193-201. PubMed ID: 8953793
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The cystine/cysteine cycle: a redox cycle regulating susceptibility versus resistance to cell death.
    Banjac A; Perisic T; Sato H; Seiler A; Bannai S; Weiss N; Kölle P; Tschoep K; Issels RD; Daniel PT; Conrad M; Bornkamm GW
    Oncogene; 2008 Mar; 27(11):1618-28. PubMed ID: 17828297
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Experimental and clinical aspects of oxidative stress and redox regulation].
    Nakamura H
    Rinsho Byori; 2003 Feb; 51(2):109-14. PubMed ID: 12690627
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Direct association of hepatopoietin with thioredoxin constitutes a redox signal transduction in activation of AP-1/NF-kappaB.
    Li Y; Liu W; Xing G; Tian C; Zhu Y; He F
    Cell Signal; 2005 Aug; 17(8):985-96. PubMed ID: 15894171
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Regulatory roles of thioredoxin in oxidative stress-induced cellular responses.
    Nishinaka Y; Masutani H; Nakamura H; Yodoi J
    Redox Rep; 2001; 6(5):289-95. PubMed ID: 11778846
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Addition of glutathione or thioredoxin to culture medium reduces intracellular redox status of porcine IVM/IVF embryos, resulting in improved development to the blastocyst stage.
    Ozawa M; Nagai T; Fahrudin M; Karja NW; Kaneko H; Noguchi J; Ohnuma K; Kikuchi K
    Mol Reprod Dev; 2006 Aug; 73(8):998-1007. PubMed ID: 16700069
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cysteine starvation activates the redox-dependent mitochondrial permeability transition in retinal pigment epithelial cells.
    Armstrong JS; Whiteman M; Yang H; Jones DP; Sternberg P
    Invest Ophthalmol Vis Sci; 2004 Nov; 45(11):4183-9. PubMed ID: 15505073
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.