BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

906 related articles for article (PubMed ID: 12956418)

  • 21. Asymmetric linker histone association directs the asymmetric rearrangement of core histone interactions in a positioned nucleosome containing a thyroid hormone response element.
    Guschin D; Chandler S; Wolffe AP
    Biochemistry; 1998 Jun; 37(24):8629-36. PubMed ID: 9628724
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Role of high mobility group (HMG) chromatin proteins in DNA repair.
    Reeves R; Adair JE
    DNA Repair (Amst); 2005 Jul; 4(8):926-38. PubMed ID: 15916927
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The in vitro reconstitution of nucleosome and its binding patterns with HMG1/2 and HMG14/17 proteins.
    Zhang SB; Huang J; Zhao H; Zhang Y; Hou CH; Cheng XD; Jiang C; Li MQ; Hu J; Qian RL
    Cell Res; 2003 Oct; 13(5):351-9. PubMed ID: 14672558
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Prediction of an HMG-box fold in the C-terminal domain of histone H1: insights into its role in DNA condensation.
    Bharath MM; Chandra NR; Rao MR
    Proteins; 2002 Oct; 49(1):71-81. PubMed ID: 12211017
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Structural and functional properties of linker histones and high mobility group proteins in polytene chromosomes.
    Wiśniewski JR; Grossbach U
    Int J Dev Biol; 1996 Feb; 40(1):177-87. PubMed ID: 8735927
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Histone H1 and chromatin interactions in human fibroblast nuclei after H1 depletion and reconstitution with H1 subfractions.
    Kostova NN; Srebreva L; Markov DV; Rundquist I
    Cytometry A; 2004 Apr; 58(2):132-9. PubMed ID: 15057966
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Yeast HMO1: Linker Histone Reinvented.
    Panday A; Grove A
    Microbiol Mol Biol Rev; 2017 Mar; 81(1):. PubMed ID: 27903656
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Chromatin accessibility to DNA minor groove ligands in vitro: role of linker histones and amino-terminal domains of octamer histones.
    Foderà R; Caneva R; Canzonetta C; Savino M
    Boll Soc Ital Biol Sper; 2000; 76(3-4):21-30. PubMed ID: 11449825
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Chromosomal high mobility group (HMG) proteins of the HMGB-type occurring in the moss Physcomitrella patens.
    Kiilerich B; Stemmer C; Merkle T; Launholt D; Gorr G; Grasser KD
    Gene; 2008 Jan; 407(1-2):86-97. PubMed ID: 17980517
    [TBL] [Abstract][Full Text] [Related]  

  • 30. HMG-D and histone H1 alter the local accessibility of nucleosomal DNA.
    Ragab A; Travers A
    Nucleic Acids Res; 2003 Dec; 31(24):7083-9. PubMed ID: 14654683
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Removal of histone tails from nucleosome dissects the physical mechanisms of salt-induced aggregation, linker histone H1-induced compaction, and 30-nm fiber formation of the nucleosome array.
    Hizume K; Nakai T; Araki S; Prieto E; Yoshikawa K; Takeyasu K
    Ultramicroscopy; 2009 Jul; 109(8):868-73. PubMed ID: 19328628
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Homodimers of chromosomal proteins HMG-14 and HMG-17 in nucleosome cores.
    Postnikov YV; Trieschmann L; Rickers A; Bustin M
    J Mol Biol; 1995 Sep; 252(4):423-32. PubMed ID: 7563062
    [TBL] [Abstract][Full Text] [Related]  

  • 33. MeCP2 preferentially binds to methylated linker DNA in the absence of the terminal tail of histone H3 and independently of histone acetylation.
    Ishibashi T; Thambirajah AA; Ausió J
    FEBS Lett; 2008 Apr; 582(7):1157-62. PubMed ID: 18339321
    [TBL] [Abstract][Full Text] [Related]  

  • 34. High mobility group protein 14 and 17 can prevent the close packing of nucleosomes by increasing the strength of protein contacts in the linker DNA.
    Tremethick DJ; Hyman L
    J Biol Chem; 1996 May; 271(20):12009-16. PubMed ID: 8662614
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Remodeling the chromatin structure of a nucleosome array by transcription factor-targeted trans-displacement of histones.
    Owen-Hughes T; Workman JL
    EMBO J; 1996 Sep; 15(17):4702-12. PubMed ID: 8887561
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Linker histone-dependent DNA structure in linear mononucleosomes.
    Hamiche A; Schultz P; Ramakrishnan V; Oudet P; Prunell A
    J Mol Biol; 1996 Mar; 257(1):30-42. PubMed ID: 8632457
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The evolution of High Mobility Group Box (HMGB) chromatin proteins in multicellular animals.
    Sessa L; Bianchi ME
    Gene; 2007 Jan; 387(1-2):133-40. PubMed ID: 17156942
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Role of histone tails in nucleosome remodeling by Drosophila NURF.
    Georgel PT; Tsukiyama T; Wu C
    EMBO J; 1997 Aug; 16(15):4717-26. PubMed ID: 9303316
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Analysis of the binding of C-reactive protein to chromatin subunits.
    Du Clos TW; Marnell L; Zlock LR; Burlingame RW
    J Immunol; 1991 Feb; 146(4):1220-5. PubMed ID: 1991964
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Specificity of the stimulatory interaction between chromosomal HMGB proteins and the transcription factor Dof2 and its negative regulation by protein kinase CK2-mediated phosphorylation.
    Krohn NM; Yanagisawa S; Grasser KD
    J Biol Chem; 2002 Sep; 277(36):32438-44. PubMed ID: 12065590
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 46.