These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
188 related articles for article (PubMed ID: 12956514)
1. Defoliation-induced responses in peroxidases, phenolics, and polyamines in scots pine (Pinus sylvestris L.) needles. Roitto M; Markkola A; Julkunen-Tiitto R; Sarjala T; Rautio P; Kuikka K; Tuomi J J Chem Ecol; 2003 Aug; 29(8):1905-18. PubMed ID: 12956514 [TBL] [Abstract][Full Text] [Related]
2. Induced accumulation of phenolics and sawfly performance in Scots pine in response to previous defoliation. Roitto M; Rautio P; Markkola A; Julkunen-Tiitto R; Varama M; Saravesi K; Tuomi J Tree Physiol; 2009 Feb; 29(2):207-16. PubMed ID: 19203946 [TBL] [Abstract][Full Text] [Related]
3. Atmospheric carbon dioxide, irrigation, and fertilization effects on phenolic and nitrogen concentrations in loblolly pine (Pinus taeda) needles. Booker FL; Maier CA Tree Physiol; 2001 Jun; 21(9):609-16. PubMed ID: 11390305 [TBL] [Abstract][Full Text] [Related]
4. Changes in the concentrations of phenolics and photosynthates in Scots pine (Pinus sylvestris L.) seedlings exposed to nickel and copper. Roitto M; Rautio P; Julkunen-Tiitto R; Kukkola E; Huttunen S Environ Pollut; 2005 Oct; 137(3):603-9. PubMed ID: 16005771 [TBL] [Abstract][Full Text] [Related]
5. Carbon assimilation and nitrogen in needles of fertilized and unfertilized field-grown Scots pine at natural and elevated concentrations of CO2. Laitinen K; Luomala EM; Kellomäki S; Vapaavuori E Tree Physiol; 2000 Jul; 20(13):881-92. PubMed ID: 11303578 [TBL] [Abstract][Full Text] [Related]
6. The role of defoliation and root rot pathogen infection in driving the mode of drought-related physiological decline in Scots pine (Pinus sylvestris L.). Aguadé D; Poyatos R; Gómez M; Oliva J; Martínez-Vilalta J Tree Physiol; 2015 Mar; 35(3):229-42. PubMed ID: 25724949 [TBL] [Abstract][Full Text] [Related]
7. Scots pine (Pinus sylvestris L.) growth and condition in a polluted environment: from decline to recovery. Juknys R; Vencloviene J; Stravinskiene V; Augustaitis A; Bartkevicius E Environ Pollut; 2003; 125(2):205-12. PubMed ID: 12810314 [TBL] [Abstract][Full Text] [Related]
8. Anatomical and morphological changes in Pinus sylvestris and Larix sibirica needles under impact of emissions from a large aluminum enterprise. Kalugina OV; Afanasyeva LV; Mikhailova TA Ecotoxicology; 2024 Jan; 33(1):66-84. PubMed ID: 38183574 [TBL] [Abstract][Full Text] [Related]
9. Insect defoliation is linked to a decrease in soil ectomycorrhizal biomass and shifts in needle endophytic communities. Castaño C; Camarero JJ; Zas R; Sampedro L; Bonet JA; Alday JG; Oliva J Tree Physiol; 2020 Dec; 40(12):1712-1725. PubMed ID: 32785638 [TBL] [Abstract][Full Text] [Related]
10. Impact of needle age on the response of respiration in Scots pine to long-term elevation of carbon dioxide concentration and temperature. Zha T; Wang KY; Ryyppö A; Kellomäki S Tree Physiol; 2002 Dec; 22(17):1241-8. PubMed ID: 12464577 [TBL] [Abstract][Full Text] [Related]
11. Partitioning of carbohydrates and biomass of needles in Scots pine canopy. Mandre M; Tullus H; Klõseiko J Z Naturforsch C J Biosci; 2002; 57(3-4):296-302. PubMed ID: 12064730 [TBL] [Abstract][Full Text] [Related]
12. The metabolic fingerprint of Scots pine-root and needle metabolites show different patterns in dying trees. Hunziker S; Nazarova T; Kather M; Hartmann M; Brunner I; Schaub M; Rigling A; Hug C; Schönbeck L; Bose AK; Kammerer B; Gessler A Tree Physiol; 2024 Apr; 44(4):. PubMed ID: 38526975 [TBL] [Abstract][Full Text] [Related]
13. The effect of previous defoliation of pole-stage lodgepole pine on plant chemistry, and on the growth and survival of pine beauty moth (Panolis flammea) larvae. Watt AD; Leather SR; Forrest GI Oecologia; 1991 Mar; 86(1):31-35. PubMed ID: 28313154 [TBL] [Abstract][Full Text] [Related]
14. Genetic effects on total phenolics, condensed tannins and non-structural carbohydrates in loblolly pine (Pinus taeda L.) needles. Aspinwall MJ; King JS; Booker FL; McKeand SE Tree Physiol; 2011 Aug; 31(8):831-42. PubMed ID: 21831860 [TBL] [Abstract][Full Text] [Related]
15. The current state of environmental pollution with sulfur dioxide (SO Likus-Cieślik J; Socha J; Gruba P; Pietrzykowski M Environ Pollut; 2020 Mar; 258():113559. PubMed ID: 32005488 [TBL] [Abstract][Full Text] [Related]
16. Nitrogen availability modifies the ozone responses of Scots pine seedlings exposed in an open-field system. Utriainen J; Holopainen T Tree Physiol; 2001 Oct; 21(16):1205-13. PubMed ID: 11600342 [TBL] [Abstract][Full Text] [Related]
17. No carbon limitation after lower crown loss in Pinus radiata. Gomez-Gallego M; Williams N; Leuzinger S; Scott PM; Bader MK Ann Bot; 2020 May; 125(6):955-967. PubMed ID: 31990290 [TBL] [Abstract][Full Text] [Related]
18. Drought stress alters the concentration of wood terpenoids in Scots pine and Norway spruce seedlings. Turtola S; Manninen AM; Rikala R; Kainulainen P J Chem Ecol; 2003 Sep; 29(9):1981-95. PubMed ID: 14584671 [TBL] [Abstract][Full Text] [Related]
19. Site fertility and the morphological and photosynthetic acclimation of Pinus sylvestris needles to light. Niinemets U; Ellsworth DS; Lukjanova A; Tobias M Tree Physiol; 2001 Nov; 21(17):1231-44. PubMed ID: 11696411 [TBL] [Abstract][Full Text] [Related]
20. Nitrogen fertilizer factory effects on the amino acid and nitrogen content in the needles of Scots pine. Kupsinskiene E ScientificWorldJournal; 2001 Dec; 1 Suppl 2():449-56. PubMed ID: 12805750 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]