BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

207 related articles for article (PubMed ID: 12956570)

  • 21. Simulated lateral ankle ligamentous injury. Change in ankle stability.
    Hollis JM; Blasier RD; Flahiff CM
    Am J Sports Med; 1995; 23(6):672-7. PubMed ID: 8600732
    [TBL] [Abstract][Full Text] [Related]  

  • 22. How Do Hindfoot Fusions Affect Ankle Biomechanics: A Cadaver Model.
    Hutchinson ID; Baxter JR; Gilbert S; Hogan MV; Ling J; Saunders SM; Wang H; Kennedy JG
    Clin Orthop Relat Res; 2016 Apr; 474(4):1008-16. PubMed ID: 26689585
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Biomechanical comparison of reconstruction techniques in simulated lateral ankle ligament injury.
    Hollis JM; Blasier RD; Flahiff CM; Hofmann OE
    Am J Sports Med; 1995; 23(6):678-82. PubMed ID: 8600733
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Differences Between Subtalar Instability and Lateral Ankle Instability Focusing on Subtalar Ligaments Based on Three Dimensional Isotropic Magnetic Resonance Imaging.
    Yoon DY; Moon SG; Jung HG; Kim NR
    J Comput Assist Tomogr; 2018; 42(4):566-573. PubMed ID: 29727309
    [TBL] [Abstract][Full Text] [Related]  

  • 25. In vivo kinematics of functional ankle instability patients during the stance phase of walking.
    Cao S; Wang C; Zhang G; Ma X; Wang X; Huang J; Zhang C; Wang K
    Gait Posture; 2019 Sep; 73():262-268. PubMed ID: 31382233
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The effect of ankle injury on subtalar motion.
    Michelson J; Hamel A; Buczek F; Sharkey N
    Foot Ankle Int; 2004 Sep; 25(9):639-46. PubMed ID: 15563386
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Ligament force and joint motion in the intact ankle: a cadaveric study.
    Bahr R; Pena F; Shine J; Lew WD; Engebretsen L
    Knee Surg Sports Traumatol Arthrosc; 1998; 6(2):115-21. PubMed ID: 9604197
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Kinematics and Laxity of the Ankle Joint in Anatomic and Nonanatomic Anterior Talofibular Ligament Repair: A Biomechanical Cadaveric Study.
    Shoji H; Teramoto A; Sakakibara Y; Kamiya T; Watanabe K; Fujie H; Yamashita T
    Am J Sports Med; 2019 Mar; 47(3):667-673. PubMed ID: 30681886
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Biomechanical comparison of tenodesis reconstruction for subtalar instability: a finite element analysis.
    Can X; Mingqing L; Chenggong W; Hua L
    BMC Musculoskelet Disord; 2020 Oct; 21(1):669. PubMed ID: 33036597
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Subtalar instability: a biomechanical cadaver study.
    Weindel S; Schmidt R; Rammelt S; Claes L; v Campe A; Rein S
    Arch Orthop Trauma Surg; 2010 Mar; 130(3):313-9. PubMed ID: 18839193
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Biomechanical properties of human cadaveric ankle-subtalar joints in quasi-static loading.
    Parenteau CS; Viano DC; Petit PY
    J Biomech Eng; 1998 Feb; 120(1):105-11. PubMed ID: 9675688
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Update on Subtalar Joint Instability.
    Mittlmeier T; Rammelt S
    Foot Ankle Clin; 2018 Sep; 23(3):397-413. PubMed ID: 30097081
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The effects of a semi-rigid brace or taping on talocrural and subtalar kinematics in chronic ankle instability.
    Kobayashi T; Saka M; Suzuki E; Yamazaki N; Suzukawa M; Akaike A; Shimizu K; Gamada K
    Foot Ankle Spec; 2014 Dec; 7(6):471-7. PubMed ID: 25053794
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Reconstruction of the lateral ligaments: do the anatomical procedures restore physiologic ankle kinematics?
    Schmidt R; Cordier E; Bertsch C; Eils E; Neller S; Benesch S; Herbst A; Rosenbaum D; Claes L
    Foot Ankle Int; 2004 Jan; 25(1):31-6. PubMed ID: 14768962
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Inversion injury biomechanics in functional ankle instability: a cadaver study of simulated gait.
    Konradsen L; Voigt M
    Scand J Med Sci Sports; 2002 Dec; 12(6):329-36. PubMed ID: 12453159
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Unlocking the talus by eversion limits medial ankle injury risk during external rotation.
    Button KD; Wei F; Haut RC
    J Biomech; 2015 Oct; 48(13):3724-7. PubMed ID: 26315917
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Three-dimensional analysis of ankle instability after tibiofibular syndesmosis injuries: a biomechanical experimental study.
    Teramoto A; Kura H; Uchiyama E; Suzuki D; Yamashita T
    Am J Sports Med; 2008 Feb; 36(2):348-52. PubMed ID: 17940143
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Effect of post-traumatic tibiotalar osteoarthritis on kinematics of the ankle joint complex.
    Kozanek M; Rubash HE; Li G; de Asla RJ
    Foot Ankle Int; 2009 Aug; 30(8):734-40. PubMed ID: 19735628
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Subtalar arthrodesis stabilisation with screws in an angulated configuration is superior to the parallel disposition: a biomechanical study.
    Eichinger M; Schmölz W; Brunner A; Mayr R; Bölderl A
    Int Orthop; 2015 Nov; 39(11):2275-80. PubMed ID: 26253359
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Estimating the stabilizing function of ankle and subtalar ligaments via a morphology-specific three-dimensional dynamic model.
    Palazzi E; Siegler S; Balakrishnan V; Leardini A; Caravaggi P; Belvedere C
    J Biomech; 2020 Jan; 98():109421. PubMed ID: 31653506
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.