These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
145 related articles for article (PubMed ID: 1295665)
1. Energy metabolism at the cellular level of the CNS. Hertz L; Peng L Can J Physiol Pharmacol; 1992; 70 Suppl():S145-57. PubMed ID: 1295665 [TBL] [Abstract][Full Text] [Related]
2. Signalling effect of elevated potassium concentrations and monoamines on brain energy metabolism at the cellular level. Huang R; Peng L; Chen Y; Hajek I; Zhao Z; Hertz L Dev Neurosci; 1994; 16(5-6):337-51. PubMed ID: 7768214 [TBL] [Abstract][Full Text] [Related]
3. Computational Flux Balance Analysis Predicts that Stimulation of Energy Metabolism in Astrocytes and their Metabolic Interactions with Neurons Depend on Uptake of K DiNuzzo M; Giove F; Maraviglia B; Mangia S Neurochem Res; 2017 Jan; 42(1):202-216. PubMed ID: 27628293 [TBL] [Abstract][Full Text] [Related]
4. Glucose and lactate metabolism during brain activation. Dienel GA; Hertz L J Neurosci Res; 2001 Dec; 66(5):824-38. PubMed ID: 11746408 [TBL] [Abstract][Full Text] [Related]
5. Autonomic control of neuronal-astrocytic interactions, regulating metabolic activities, and ion fluxes in the CNS. Hertz L Brain Res Bull; 1992; 29(3-4):303-13. PubMed ID: 1393603 [TBL] [Abstract][Full Text] [Related]
6. Cellular mechanisms of brain energy metabolism and their relevance to functional brain imaging. Magistretti PJ; Pellerin L Philos Trans R Soc Lond B Biol Sci; 1999 Jul; 354(1387):1155-63. PubMed ID: 10466143 [TBL] [Abstract][Full Text] [Related]
7. High extracellular potassium concentrations stimulate oxidative metabolism in a glutamatergic neuronal culture and glycolysis in cultured astrocytes but have no stimulatory effect in a GABAergic neuronal culture. Peng L; Zhang X; Hertz L Brain Res; 1994 Nov; 663(1):168-72. PubMed ID: 7850466 [TBL] [Abstract][Full Text] [Related]
8. Lack of appropriate stoichiometry: Strong evidence against an energetically important astrocyte-neuron lactate shuttle in brain. Dienel GA J Neurosci Res; 2017 Nov; 95(11):2103-2125. PubMed ID: 28151548 [TBL] [Abstract][Full Text] [Related]
9. Energy metabolism in astrocytes: high rate of oxidative metabolism and spatiotemporal dependence on glycolysis/glycogenolysis. Hertz L; Peng L; Dienel GA J Cereb Blood Flow Metab; 2007 Feb; 27(2):219-49. PubMed ID: 16835632 [TBL] [Abstract][Full Text] [Related]
10. Differential effects of energy deprivation on intracellular sodium homeostasis in neurons and astrocytes. Gerkau NJ; Rakers C; Petzold GC; Rose CR J Neurosci Res; 2017 Nov; 95(11):2275-2285. PubMed ID: 28150887 [TBL] [Abstract][Full Text] [Related]
11. The metabolism of C-glucose by neurons and astrocytes in brain subregions following focal cerebral ischemia in rats. Thoren AE; Helps SC; Nilsson M; Sims NR J Neurochem; 2006 May; 97(4):968-78. PubMed ID: 16606370 [TBL] [Abstract][Full Text] [Related]
12. Effects of barbiturates on energy metabolism by cultured astrocytes and neurons in the presence of normal and elevated concentrations of potassium. Hertz E; Shargool M; Hertz L Neuropharmacology; 1986 May; 25(5):533-9. PubMed ID: 3090468 [TBL] [Abstract][Full Text] [Related]
13. Fatty acids in energy metabolism of the central nervous system. Panov A; Orynbayeva Z; Vavilin V; Lyakhovich V Biomed Res Int; 2014; 2014():472459. PubMed ID: 24883315 [TBL] [Abstract][Full Text] [Related]
14. Energy metabolism in astrocytes and neurons treated with manganese: relation among cell-specific energy failure, glucose metabolism, and intercellular trafficking using multinuclear NMR-spectroscopic analysis. Zwingmann C; Leibfritz D; Hazell AS J Cereb Blood Flow Metab; 2003 Jun; 23(6):756-71. PubMed ID: 12796724 [TBL] [Abstract][Full Text] [Related]
15. Intercellular metabolic compartmentation in the brain: past, present and future. Hertz L Neurochem Int; 2004; 45(2-3):285-96. PubMed ID: 15145544 [TBL] [Abstract][Full Text] [Related]
16. Monoaminergic Control of Cellular Glucose Utilization by Glycogenolysis in Neocortex and Hippocampus. DiNuzzo M; Giove F; Maraviglia B; Mangia S Neurochem Res; 2015 Dec; 40(12):2493-504. PubMed ID: 26168779 [TBL] [Abstract][Full Text] [Related]
17. Differences in neurotransmitter synthesis and intermediary metabolism between glutamatergic and GABAergic neurons during 4 hours of middle cerebral artery occlusion in the rat: the role of astrocytes in neuronal survival. Håberg A; Qu H; Saether O; Unsgård G; Haraldseth O; Sonnewald U J Cereb Blood Flow Metab; 2001 Dec; 21(12):1451-63. PubMed ID: 11740207 [TBL] [Abstract][Full Text] [Related]
18. Energy Metabolism of the Brain, Including the Cooperation between Astrocytes and Neurons, Especially in the Context of Glycogen Metabolism. Falkowska A; Gutowska I; Goschorska M; Nowacki P; Chlubek D; Baranowska-Bosiacka I Int J Mol Sci; 2015 Oct; 16(11):25959-81. PubMed ID: 26528968 [TBL] [Abstract][Full Text] [Related]
19. Astrocytes and energy metabolism. Prebil M; Jensen J; Zorec R; Kreft M Arch Physiol Biochem; 2011 May; 117(2):64-9. PubMed ID: 21214428 [TBL] [Abstract][Full Text] [Related]
20. Cultures of rat astrocytes challenged with a steady supply of glutamate: new model to study flux distribution in the glutamate-glutamine cycle. Fonseca LL; Monteiro MA; Alves PM; Carrondo MJ; Santos H Glia; 2005 Sep; 51(4):286-96. PubMed ID: 15834952 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]