BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 129568)

  • 1. Separate effects of mercurial compounds on the ionophoric and hydrolytic functions of the (Ca++ +Mg++)-ATPase of sarcoplasmic reticulum.
    Shamoo AE; MacLennan DH
    J Membr Biol; 1975 Dec; 25(1-2):65-74. PubMed ID: 129568
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Differential effects of mercurial compounds on excitable tissues.
    Shamoo AE; Maclennan DH; Elderfrawi ME
    Chem Biol Interact; 1976 Jan; 12(1):41-52. PubMed ID: 129302
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Localization of ionophore activity in a 20,000-dalton fragment of the adenosine triphosphatase of Sarcoplasmic reticulum.
    Shamoo AE; Ryan TE; Stewart PS; MacLennan DH
    J Biol Chem; 1976 Jul; 251(13):4147-54. PubMed ID: 132445
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mechanism of action of "ruthenium red" compounds on Ca2+ ionophore from sarcoplasmic reticulum (Ca2+ + Mg2+)- adenosine triphosphatase and lipid bilayer.
    Shamoo AE; Thompson TR; Campbell KP; Scott TL; Goldstein DA
    J Biol Chem; 1975 Oct; 250(20):8289-91. PubMed ID: 126243
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Active calcium treatment transport via coupling between the enzymatic and the ionophoric sites of Ca2+ + Mg2+-ATPase.
    Shamoo AE; Scott TL; Ryan TE
    J Supramol Struct; 1977; 6(3):345-53. PubMed ID: 145515
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Calcium additional to that bound to the transport sites is required for full activation of the sarcoplasmic reticulum Ca-ATPase from skeletal muscle.
    Alonso GL; González DA; Takara D; Ostuni MA; Sánchez GA
    Biochim Biophys Acta; 1998 Oct; 1405(1-3):47-54. PubMed ID: 9784602
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mechanism of ATP hydrolysis by sarcoplasmic reticulum and the role of phospholipids.
    Nakamura H; Jilka RL; Boland R; Martonosi AN
    J Biol Chem; 1976 Sep; 251(17):5414-23. PubMed ID: 134038
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The effect of ionomycin on calcium fluxes in sarcoplasmic reticulum vesicles and liposomes.
    Beeler TJ; Jona I; Martonosi A
    J Biol Chem; 1979 Jul; 254(14):6229-31. PubMed ID: 156184
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The mechanism of ATP hydrolysis by sacoplasmic reticulum.
    Coffey RL; Lagwinska E; Oliver M; Martonosi A
    Arch Biochem Biophys; 1975 Sep; 170(1):37-48. PubMed ID: 240324
    [No Abstract]   [Full Text] [Related]  

  • 10. A coupling factor from sarcoplasmic reticulum required for the translocation of Ca2+ ions in a reconstituted Ca2+ATPase pump.
    Racker E; Eytan E
    J Biol Chem; 1975 Sep; 250(18):7533-4. PubMed ID: 126239
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Isolation of ionophores from ion-transport systems.
    Shamoo AE; Ryan TE
    Ann N Y Acad Sci; 1975 Dec; 264():83-97. PubMed ID: 130822
    [No Abstract]   [Full Text] [Related]  

  • 12. Characterization of cardiac sarcoplasmic reticulum ATP-ADP phosphate exchange and phosphorylation of the calcium transport adenosine triphosphatase.
    Suko J; Hasselbach W
    Eur J Biochem; 1976 Apr; 64(1):123-30. PubMed ID: 6267
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ionophorous properties of the 13 000-Da fragment from sarcoplasmic reticulum (Ca2+ + Mg2+)-ATPase.
    Herrmann TR; Shamoo AE
    Biochim Biophys Acta; 1983 Aug; 732(3):647-50. PubMed ID: 6135449
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mg2+ and Mn2+ modulation of Ca2+ transport and ATPase activity in sarcoplasmic reticulum vesicles.
    Chiesi M; Inesi G
    Arch Biochem Biophys; 1981 May; 208(2):586-92. PubMed ID: 6455090
    [No Abstract]   [Full Text] [Related]  

  • 15. Structural changes in sarcoplasmic reticulum membrane induced by SH reagents.
    Dupont Y; Hasselbach W
    Nat New Biol; 1973 Nov; 246(150):41-4. PubMed ID: 4271338
    [No Abstract]   [Full Text] [Related]  

  • 16. The effect of divalent and trivalent cation binding on the transport and ATPase activity of calcium- and magnesium-dependent adenosine triphosphatase.
    Abramson JJ; Shamoo AE
    Ann N Y Acad Sci; 1980; 358():322-3. PubMed ID: 6452082
    [No Abstract]   [Full Text] [Related]  

  • 17. Rapid kinetics of calcium ion transport and ATPase activity in the sarcoplasmic reticulum of dystrophic muscle.
    Verjovski-Almeida S; Inesi G
    Biochim Biophys Acta; 1979 Nov; 558(1):119-25. PubMed ID: 159072
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [ATPase activity and processes of calcium transport in membranes of sarcoplasmic reticulum of skeletal muscles with E-avitaminotic dystrophy].
    Kurskiĭ MD; Grigor'eva VA; Medovar EN; Meshkova LI
    Ukr Biokhim Zh (1978); 1978; 50(1):85-90. PubMed ID: 146930
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ionophorous properties of the 20,000-dalton fragment of (Ca2+ + Mg2+)-ATPase in phosphatidylcholine: cholesterol membranes.
    Shamoo AE
    J Membr Biol; 1978 Oct; 43(2-3):227-42. PubMed ID: 152358
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mg2+ and ATP effects on K+ activation of the Ca2+-transport ATPase of cardiac sarcoplasmic reticulum.
    Jones LR
    Biochim Biophys Acta; 1979 Oct; 557(1):230-42. PubMed ID: 162038
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.