These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

105 related articles for article (PubMed ID: 1295680)

  • 1. Extracellular K+, pH, and volume changes in spinal cord of adult rats and during postnatal development.
    Syková E; Jendelová P; Svoboda J; Chvátal A
    Can J Physiol Pharmacol; 1992; 70 Suppl():S301-9. PubMed ID: 1295680
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Extracellular ionic and volume changes: the role in glia-neuron interaction.
    Syková E; Chvátal A
    J Chem Neuroanat; 1993; 6(4):247-60. PubMed ID: 8104419
    [TBL] [Abstract][Full Text] [Related]  

  • 3. K+ and pH homeostasis in the developing rat spinal cord is impaired by early postnatal X-irradiation.
    Syková E; Jendelová P; Simonová Z; Chvátal A
    Brain Res; 1992 Oct; 594(1):19-30. PubMed ID: 1467938
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Extracellular alkaline-acid-alkaline transients in the rat spinal cord evoked by peripheral stimulation.
    Syková E; Svoboda J
    Brain Res; 1990 Apr; 512(2):181-9. PubMed ID: 2354355
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Role of glia in K+ and pH homeostasis in the neonatal rat spinal cord.
    Jendelová P; Syková E
    Glia; 1991; 4(1):56-63. PubMed ID: 1828787
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Stimulation-evoked changes in extracellular pH, calcium and potassium activity in the frog spinal cord.
    Chvátal A; Jendelová P; Kríz N; Syková E
    Physiol Bohemoslov; 1988; 37(3):203-12. PubMed ID: 2975788
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Extracellular pH and stimulated neurons.
    Syková E; Svoboda J; Chvátal A; Jendelová P
    Ciba Found Symp; 1988; 139():220-35. PubMed ID: 3203566
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Extracellular alkalinization evoked by GABA and its relationship to activity-dependent pH shifts in turtle cerebellum.
    Chen JC; Chesler M
    J Physiol; 1991 Oct; 442():431-46. PubMed ID: 1798035
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Stimulus-induced extracellular pH transients in the in vitro turtle cerebellum.
    Chesler M; Chan CY
    Neuroscience; 1988 Dec; 27(3):941-8. PubMed ID: 3252179
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Lactate-proton co-transport and its contribution to interstitial acidification during hypoxia in isolated rat spinal roots.
    Schneider U; Poole RC; Halestrap AP; Grafe P
    Neuroscience; 1993 Apr; 53(4):1153-62. PubMed ID: 8389429
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Na(+)-HCO3- symport in the sheep cardiac Purkinje fibre.
    Dart C; Vaughan-Jones RD
    J Physiol; 1992; 451():365-85. PubMed ID: 1403816
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Intracellular pH regulation in cultured embryonic chick heart cells. Na(+)-dependent Cl-/HCO3- exchange.
    Liu S; Piwnica-Worms D; Lieberman M
    J Gen Physiol; 1990 Dec; 96(6):1247-69. PubMed ID: 1962815
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Glutamate, NMDA, and AMPA induced changes in extracellular space volume and tortuosity in the rat spinal cord.
    Vargová L; Jendelová P; Chvátal A; Syková E
    J Cereb Blood Flow Metab; 2001 Sep; 21(9):1077-89. PubMed ID: 11524612
    [TBL] [Abstract][Full Text] [Related]  

  • 14. K(+)- and HCO3(-)-dependent acid-base transport in squid giant axons II. Base influx.
    Hogan EM; Cohen MA; Boron WF
    J Gen Physiol; 1995 Nov; 106(5):845-62. PubMed ID: 8648295
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Role of bicarbonate in pH recovery from intracellular acidosis in the guinea-pig ventricular myocyte.
    Lagadic-Gossmann D; Buckler KJ; Vaughan-Jones RD
    J Physiol; 1992 Dec; 458():361-84. PubMed ID: 1302269
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Extracellular pH, [K+] and synaptic transmission in the dorsal horn of spinal cord of rats in hypercapnia].
    Motin VG; Tarakanov IA; Semkina GA; Kaliuzhnyĭ LV
    Biull Eksp Biol Med; 1992 Jan; 113(1):8-10. PubMed ID: 1327280
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sodium and chloride transport across rabbit ileal brush border. II. Evidence for Cl-HCO3 exchange and mechanism of coupling.
    Knickelbein R; Aronson PS; Schron CM; Seifter J; Dobbins JW
    Am J Physiol; 1985 Aug; 249(2 Pt 1):G236-45. PubMed ID: 3927745
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Extracellular pH changes during spreading depression and cerebral ischemia: mechanisms of brain pH regulation.
    Mutch WA; Hansen AJ
    J Cereb Blood Flow Metab; 1984 Mar; 4(1):17-27. PubMed ID: 6693512
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Activity-evoked extracellular pH shifts in slices of rat dorsal lateral geniculate nucleus.
    Tong CK; Chesler M
    Brain Res; 1999 Jan; 815(2):373-81. PubMed ID: 9878835
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electrogenic sodium-dependent bicarbonate secretion by glial cells of the leech central nervous system.
    Deitmer JW
    J Gen Physiol; 1991 Sep; 98(3):637-55. PubMed ID: 1761972
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.