These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 1295682)

  • 1. Quantitative analysis of extracellular space using the method of TMA+ iontophoresis and the issue of TMA+ uptake.
    Nicholson C
    Can J Physiol Pharmacol; 1992; 70 Suppl():S314-22. PubMed ID: 1295682
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Extracellular volume fraction and diffusion characteristics during progressive ischemia and terminal anoxia in the spinal cord of the rat.
    Syková E; Svoboda J; Polák J; Chvátal A
    J Cereb Blood Flow Metab; 1994 Mar; 14(2):301-11. PubMed ID: 8113325
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ischemia-induced changes in the extracellular space diffusion parameters, K+, and pH in the developing rat cortex and corpus callosum.
    Vorísek I; Syková E
    J Cereb Blood Flow Metab; 1997 Feb; 17(2):191-203. PubMed ID: 9040499
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Time-resolved quantification of the dynamic extracellular space in the brain during short-lived event: methodology and simulations.
    Chen KC; Zhou Y; Zhao HH
    J Neurophysiol; 2019 May; 121(5):1718-1734. PubMed ID: 30786219
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Issues involved in the transmission of chemical signals through the brain extracellular space.
    Nicholson C
    Acta Morphol Neerl Scand; 1988-1989; 26(2-3):69-80. PubMed ID: 2908164
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Significant shrinkage of extracellular space during global cerebral ischemia: differences in gray and white matter ischemia.
    Kumura E; Dohmen C; Graf R; Yoshimine T; Heiss WD
    Acta Neurochir Suppl; 2003; 86():67-70. PubMed ID: 14753407
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ion diffusion modified by tortuosity and volume fraction in the extracellular microenvironment of the rat cerebellum.
    Nicholson C; Phillips JM
    J Physiol; 1981 Dec; 321():225-57. PubMed ID: 7338810
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ion-selective microelectrodes and diffusion measurements as tools to explore the brain cell microenvironment.
    Nicholson C
    J Neurosci Methods; 1993 Jul; 48(3):199-213. PubMed ID: 8412303
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Real-time Iontophoresis with Tetramethylammonium to Quantify Volume Fraction and Tortuosity of Brain Extracellular Space.
    Odackal J; Colbourn R; Odackal NJ; Tao L; Nicholson C; Hrabetova S
    J Vis Exp; 2017 Jul; (125):. PubMed ID: 28784968
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Anisotropic and heterogeneous diffusion in the turtle cerebellum: implications for volume transmission.
    Rice ME; Okada YC; Nicholson C
    J Neurophysiol; 1993 Nov; 70(5):2035-44. PubMed ID: 7507522
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Diffusion from an iontophoretic point source in the brain: role of tortuosity and volume fraction.
    Nicholson C; Phillips JM; Gardner-Medwin AR
    Brain Res; 1979 Jun; 169(3):580-4. PubMed ID: 445169
    [No Abstract]   [Full Text] [Related]  

  • 12. Changes of extracellular space volume and tortuosity in the spinal cord of Lewis rats with experimental autoimmune encephalomyelitis.
    Simonová Z; Svoboda J; Orkand P; Bernard CC; Lassmann H; Syková E
    Physiol Res; 1996; 45(1):11-22. PubMed ID: 8884919
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Aquaporin-4-deficient mice have increased extracellular space without tortuosity change.
    Yao X; Hrabetová S; Nicholson C; Manley GT
    J Neurosci; 2008 May; 28(21):5460-4. PubMed ID: 18495879
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Diffusion in brain extracellular space.
    Syková E; Nicholson C
    Physiol Rev; 2008 Oct; 88(4):1277-340. PubMed ID: 18923183
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Extracellular diffusion is fast and isotropic in the stratum radiatum of hippocampal CA1 region in rat brain slices.
    Hrabetová S
    Hippocampus; 2005; 15(4):441-50. PubMed ID: 15719413
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of nitric oxide inhibition on the spread of biotinylated dextran and on extracellular space parameters in the neostriatum of the male rat.
    Jansson A; Mazel T; Andbjer B; Rosén L; Guidolin D; Zoli M; Syková E; Agnati LF; Fuxe K
    Neuroscience; 1999; 91(1):69-80. PubMed ID: 10336061
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dopamine-mediated volume transmission in midbrain is regulated by distinct extracellular geometry and uptake.
    Cragg SJ; Nicholson C; Kume-Kick J; Tao L; Rice ME
    J Neurophysiol; 2001 Apr; 85(4):1761-71. PubMed ID: 11287497
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Diffusion of molecules in brain extracellular space: theory and experiment.
    Nicholson C; Chen KC; Hrabĕtová S; Tao L
    Prog Brain Res; 2000; 125():129-54. PubMed ID: 11098654
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Changes in extracellular space size and geometry in APP23 transgenic mice: a model of Alzheimer's disease.
    Syková E; Vorísek I; Antonova T; Mazel T; Meyer-Luehmann M; Jucker M; Hájek M; Ort M; Bures J
    Proc Natl Acad Sci U S A; 2005 Jan; 102(2):479-84. PubMed ID: 15630088
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Diffusion in the slice microenvironment and implications for physiological studies.
    Nicholson C; Hounsgaard J
    Fed Proc; 1983 Sep; 42(12):2865-8. PubMed ID: 6350048
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.