BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

335 related articles for article (PubMed ID: 12957154)

  • 1. The influence of atmospheric pressure on landfill methane emissions.
    Czepiel PM; Shorter JH; Mosher B; Allwine E; McManus JB; Harriss RC; Kolb CE; Lamb BK
    Waste Manag; 2003; 23(7):593-8. PubMed ID: 12957154
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Uncontrolled methane emissions from a MSW landfill surface: influence of landfill features and side slopes.
    Di Trapani D; Di Bella G; Viviani G
    Waste Manag; 2013 Oct; 33(10):2108-15. PubMed ID: 23465313
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Development of a low-maintenance measurement approach to continuously estimate methane emissions: A case study.
    Riddick SN; Hancock BR; Robinson AD; Connors S; Davies S; Allen G; Pitt J; Harris NRP
    Waste Manag; 2018 Mar; 73():210-219. PubMed ID: 28003116
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mitigation of methane emissions in a pilot-scale biocover system at the AV Miljø Landfill, Denmark: 2. Methane oxidation.
    Scheutz C; Cassini F; De Schoenmaeker J; Kjeldsen P
    Waste Manag; 2017 May; 63():203-212. PubMed ID: 28161333
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Methodologies for measuring fugitive methane emissions from landfills - A review.
    Mønster J; Kjeldsen P; Scheutz C
    Waste Manag; 2019 Mar; 87():835-859. PubMed ID: 30660403
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Non-controlled biogenic emissions to the atmosphere from Lazareto landfill, Tenerife, Canary Islands.
    Nolasco D; Lima RN; Hernández PA; Pérez NM
    Environ Sci Pollut Res Int; 2008 Jan; 15(1):51-60. PubMed ID: 18306888
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Short-term landfill methane emissions dependency on wind.
    Delkash M; Zhou B; Han B; Chow FK; Rella CW; Imhoff PT
    Waste Manag; 2016 Sep; 55():288-98. PubMed ID: 26896003
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Determination of gas recovery efficiency at two Danish landfills by performing downwind methane measurements and stable carbon isotopic analysis.
    Aghdam EF; Fredenslund AM; Chanton J; Kjeldsen P; Scheutz C
    Waste Manag; 2018 Mar; 73():220-229. PubMed ID: 29249311
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Relating landfill gas emissions to atmospheric pressure using numerical modelling and state-space analysis.
    Poulsen TG; Christophersen M; Moldrup P; Kjeldsen P
    Waste Manag Res; 2003 Aug; 21(4):356-66. PubMed ID: 14531521
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evaluation of a biologically active cover for mitigation of landfill gas emissions.
    Barlaz MA; Green RB; Chanton JP; Goldsmith CD; Hater GR
    Environ Sci Technol; 2004 Sep; 38(18):4891-9. PubMed ID: 15487801
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An analytical model for estimating the reduction of methane emission through landfill cover soils by methane oxidation.
    Yao Y; Su Y; Wu Y; Liu W; He R
    J Hazard Mater; 2015; 283():871-9. PubMed ID: 25464331
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Short-term monitoring of methane emission regulation from a municipal solid waste landfill].
    Gao ZW; He PJ; Shao LM; Li GJ; Yu JY; Zheng XJ; Xu YE
    Huan Jing Ke Xue; 2006 Sep; 27(9):1727-31. PubMed ID: 17117623
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mobile measurements of climate forcing agents: Application to methane emissions from landfill and natural gas compression.
    Jakober CA; Mara SL; Hsu YK; Herner JD
    J Air Waste Manag Assoc; 2015 Apr; 65(4):404-12. PubMed ID: 25947210
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Spatial variability of nitrous oxide and methane emissions from an MBT landfill in operation: strong N2O hotspots at the working face.
    Harborth P; Fuss R; Münnich K; Flessa H; Fricke K
    Waste Manag; 2013 Oct; 33(10):2099-107. PubMed ID: 23453435
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Landfill gas collection efficiency: Categorization of data from existing in-situ measurements.
    Giordano CR; Van Brunt ME; Halevi SJ; Castaldi MJ; Orlovits Z; Illes Z
    Waste Manag; 2024 Mar; 175():83-91. PubMed ID: 38176201
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Measured gas emissions from four landfills in south africa and some implications for landfill design and methane recovery in semi-arid climates.
    Fourie AB; Morris JW
    Waste Manag Res; 2004 Dec; 22(6):440-53. PubMed ID: 15666447
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Methane emissions from Icelandic landfills - A comparison between measured and modelled emissions.
    Scheutz C; Kjeld A; Fredenslund AM
    Waste Manag; 2022 Feb; 139():136-145. PubMed ID: 34968899
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Stimulation of methane oxidation potential and effects on vegetation growth by bottom ash addition in a landfill final evapotranspiration cover.
    Kim GW; Ho A; Kim PJ; Kim SY
    Waste Manag; 2016 Sep; 55():306-12. PubMed ID: 27067424
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of earthworm cast and powdered activated carbon on methane removal capacity of landfill cover soils.
    Park S; Lee I; Cho C; Sung K
    Chemosphere; 2008 Jan; 70(6):1117-23. PubMed ID: 17764722
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Methane emissions from a landfill in north-east India: Performance of various landfill gas emission models.
    Gollapalli M; Kota SH
    Environ Pollut; 2018 Mar; 234():174-180. PubMed ID: 29175479
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.