BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 12957390)

  • 21. Kruppel-like factor 15, a zinc-finger transcriptional regulator, represses the rhodopsin and interphotoreceptor retinoid-binding protein promoters.
    Otteson DC; Liu Y; Lai H; Wang C; Gray S; Jain MK; Zack DJ
    Invest Ophthalmol Vis Sci; 2004 Aug; 45(8):2522-30. PubMed ID: 15277472
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Ret 4, a positive acting rhodopsin regulatory element identified using a bovine retina in vitro transcription system.
    Chen S; Zack DJ
    J Biol Chem; 1996 Nov; 271(45):28549-57. PubMed ID: 8910484
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Reporter gene expression in cones in transgenic mice carrying bovine rhodopsin promoter/lacZ transgenes.
    Gouras P; Kjeldbye H; Zack DJ
    Vis Neurosci; 1994; 11(6):1227-31. PubMed ID: 7841129
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Genomic structure and evolutionary conservation of the tyrosinase gene family from Fugu.
    Camacho-Hübner A; Richard C; Beermann F
    Gene; 2002 Feb; 285(1-2):59-68. PubMed ID: 12039032
    [TBL] [Abstract][Full Text] [Related]  

  • 25. ACE2 orthologues in non-mammalian vertebrates (Danio, Gallus, Fugu, Tetraodon and Xenopus).
    Chou CF; Loh CB; Foo YK; Shen S; Fielding BC; Tan TH; Khan S; Wang Y; Lim SG; Hong W; Tan YJ; Fu J
    Gene; 2006 Aug; 377():46-55. PubMed ID: 16781089
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Genomic structure and sequence of the pufferfish (Fugu rubripes) growth hormone-encoding gene: a comparative analysis of teleost growth hormone genes.
    Venkatesh B; Brenner S
    Gene; 1997 Mar; 187(2):211-5. PubMed ID: 9099882
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Zygote arrest 1 (Zar1) is an evolutionarily conserved gene expressed in vertebrate ovaries.
    Wu X; Wang P; Brown CA; Zilinski CA; Matzuk MM
    Biol Reprod; 2003 Sep; 69(3):861-7. PubMed ID: 12773403
    [TBL] [Abstract][Full Text] [Related]  

  • 28. An improved rhodopsin/EGFP fusion protein for use in the generation of transgenic Xenopus laevis.
    Jin S; McKee TD; Oprian DD
    FEBS Lett; 2003 May; 542(1-3):142-6. PubMed ID: 12729914
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Mechanisms controlling Pax6 isoform expression in the retina have been conserved between teleosts and mammals.
    Lakowski J; Majumder A; Lauderdale JD
    Dev Biol; 2007 Jul; 307(2):498-520. PubMed ID: 17509554
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Improved retinal transduction in vivo and photoreceptor-specific transgene expression using adenovirus vectors with modified penton base.
    Cashman SM; McCullough L; Kumar-Singh R
    Mol Ther; 2007 Sep; 15(9):1640-6. PubMed ID: 17505470
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The basic motif-leucine zipper transcription factor Nrl can positively regulate rhodopsin gene expression.
    Rehemtulla A; Warwar R; Kumar R; Ji X; Zack DJ; Swaroop A
    Proc Natl Acad Sci U S A; 1996 Jan; 93(1):191-5. PubMed ID: 8552602
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Proximal and distal sequences control UV cone pigment gene expression in transgenic zebrafish.
    Luo W; Williams J; Smallwood PM; Touchman JW; Roman LM; Nathans J
    J Biol Chem; 2004 Apr; 279(18):19286-93. PubMed ID: 14966125
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Characterization of the Xenopus rhodopsin gene.
    Batni S; Scalzetti L; Moody SA; Knox BE
    J Biol Chem; 1996 Feb; 271(6):3179-86. PubMed ID: 8621718
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Retinal expression of the X-linked juvenile retinoschisis (RS1) gene is controlled by an upstream CpG island and two opposing CRX-bound regions.
    Kraus D; Karlstetter M; Walczak Y; Hilfinger D; Langmann T; Weber BH
    Biochim Biophys Acta; 2011; 1809(4-6):245-54. PubMed ID: 21392589
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Expression patterns of zebrafish
    Yang X; Fu J; Wei X
    Mol Vis; 2017; 23():1039-1047. PubMed ID: 29386877
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Functional characterisation and genomic analysis of an epithelial calcium channel (ECaC) from pufferfish, Fugu rubripes.
    Qiu A; Hogstrand C
    Gene; 2004 Nov; 342(1):113-23. PubMed ID: 15527971
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The mouse muscle creatine kinase promoter faithfully drives reporter gene expression in transgenic Xenopus laevis.
    Lim W; Neff ES; Furlow JD
    Physiol Genomics; 2004 Jun; 18(1):79-86. PubMed ID: 15010518
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Faithful expression of a tagged Fugu WT1 protein from a genomic transgene in zebrafish: efficient splicing of pufferfish genes in zebrafish but not mice.
    Miles CG; Rankin L; Smith SI; Niksic M; Elgar G; Hastie ND
    Nucleic Acids Res; 2003 Jun; 31(11):2795-802. PubMed ID: 12771206
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Transgenic expression of a GFP-rhodopsin COOH-terminal fusion protein in zebrafish rod photoreceptors.
    Perkins BD; Kainz PM; O'Malley DM; Dowling JE
    Vis Neurosci; 2002; 19(4):257R-264R. PubMed ID: 12511087
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Fugu and human sequence comparison identifies novel human genes and conserved non-coding sequences.
    Gilligan P; Brenner S; Venkatesh B
    Gene; 2002 Jul; 294(1-2):35-44. PubMed ID: 12234665
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.