These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 12957911)

  • 41. Enhanced reduction of Fe(III) oxides and methyl orange by Klebsiella oxytoca in presence of anthraquinone-2-disulfonate.
    Yu L; Wang S; Tang QW; Cao MY; Li J; Yuan K; Wang P; Li WW
    Appl Microbiol Biotechnol; 2016 May; 100(10):4617-25. PubMed ID: 26762391
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Fe(III) as an electron acceptor for H2 oxidation in thermophilic anaerobic enrichment cultures from geothermal areas.
    Slobodkin AI; Wiegel J
    Extremophiles; 1997 May; 1(2):106-9. PubMed ID: 9680310
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Rhodoferax ferrireducens sp. nov., a psychrotolerant, facultatively anaerobic bacterium that oxidizes acetate with the reduction of Fe(III).
    Finneran KT; Johnsen CV; Lovley DR
    Int J Syst Evol Microbiol; 2003 May; 53(Pt 3):669-673. PubMed ID: 12807184
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Humic Substances Facilitate Arsenic Reduction and Release in Flooded Paddy Soil.
    Qiao J; Li X; Li F; Liu T; Young LY; Huang W; Sun K; Tong H; Hu M
    Environ Sci Technol; 2019 May; 53(9):5034-5042. PubMed ID: 30942579
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Comparison of natural humic substances and synthetic ethylenediaminetetraacetic acid and nitrilotriacetic acid as washing agents of a heavy metal-polluted soil.
    Soleimani M; Hajabbasi MA; Afyuni M; Akbar S; Jensen JK; Holm PE; Borggaard OK
    J Environ Qual; 2010; 39(3):855-62. PubMed ID: 20400581
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Influence of chelating agents on biogenic uraninite reoxidation by Fe(III) (Hydr)oxides.
    Stewart BD; Girardot C; Spycher N; Sani RK; Peyton BM
    Environ Sci Technol; 2013 Jan; 47(1):364-71. PubMed ID: 23163577
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Application of UV-irradiated Fe(III)-nitrilotriacetic acid (UV-Fe(III)NTA) and UV-NTA-Fenton systems to degrade model and natural occurring naphthenic acids.
    Zhang Y; Chelme-Ayala P; Klamerth N; Gamal El-Din M
    Chemosphere; 2017 Jul; 179():359-366. PubMed ID: 28388447
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Extracellular electron transfer to Fe(III) oxides by the hyperthermophilic archaeon Geoglobus ahangari via a direct contact mechanism.
    Manzella MP; Reguera G; Kashefi K
    Appl Environ Microbiol; 2013 Aug; 79(15):4694-700. PubMed ID: 23728807
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Taxonomical and functional microbial community dynamics in an Anammox-ASBR system under different Fe (III) supplementation.
    Wang X; Shu D; Yue H
    Appl Microbiol Biotechnol; 2016 Dec; 100(23):10147-10163. PubMed ID: 27695916
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Rates and extent of reduction of Fe(III) compounds and O2 by humic substances.
    Bauer I; Kappler A
    Environ Sci Technol; 2009 Jul; 43(13):4902-8. PubMed ID: 19673283
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Reduction of Fe(III) oxide by methanogens in the presence and absence of extracellular quinones.
    Bond DR; Lovley DR
    Environ Microbiol; 2002 Feb; 4(2):115-24. PubMed ID: 11972621
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Effects of microbial iron reduction and oxidation on the immobilization and mobilization of copper in synthesized Fe(III) minerals and Fe-rich soils.
    Hu C; Zhang Y; Zhang L; Luo W
    J Microbiol Biotechnol; 2014 Apr; 24(4):534-44. PubMed ID: 24448165
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Iron oxide nanoparticles in geomicrobiology: from biogeochemistry to bioremediation.
    Braunschweig J; Bosch J; Meckenstock RU
    N Biotechnol; 2013 Sep; 30(6):793-802. PubMed ID: 23557995
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Oxidation and turnover of renal metallothioneins after an injection of ferric nitrilotriacetate.
    Min KS; Kishi N; Yamashita N; Tanaka K
    Chem Biol Interact; 2012 Jan; 195(1):61-7. PubMed ID: 22001350
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Humic substance-mediated reduction of iron(III) oxides and degradation of 2,4-D by an alkaliphilic bacterium, Corynebacterium humireducens MFC-5.
    Wu CY; Zhuang L; Zhou SG; Yuan Y; Yuan T; Li FB
    Microb Biotechnol; 2013 Mar; 6(2):141-9. PubMed ID: 23217085
    [TBL] [Abstract][Full Text] [Related]  

  • 56. The host-protein-independent iron uptake by Tritrichomonas foetus.
    Tachezy J; Suchan P; Schrével J; Kulda J
    Exp Parasitol; 1998 Oct; 90(2):155-63. PubMed ID: 9769245
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Impairment of bone formation with aluminum and ferric nitrilotriacetate complexes.
    Ebina Y; Okada S; Hamazaki S; Toda Y; Midorikawa O
    Calcif Tissue Int; 1991 Jan; 48(1):28-36. PubMed ID: 2007224
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Kinetics and mechanisms of the oxidation of myoglobin by Fe(III) and Cu(II) complexes.
    Hegetschweiler K; Saltman P; Dalvit C; Wright PE
    Biochim Biophys Acta; 1987 Apr; 912(3):384-97. PubMed ID: 3567208
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Mechanistic insights into a novel nitrilotriacetic acid-Fe
    Liang J; Zhang L; Yan W; Zhou Y
    Water Res; 2020 Oct; 184():116149. PubMed ID: 32750584
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Thiol-mediated NTA-Fe(III) reduction and lipid peroxidation.
    Spear N; Aust SD
    Arch Biochem Biophys; 1994 Jul; 312(1):198-202. PubMed ID: 8031128
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.