These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 12957911)

  • 61. Hydroxyl radical involvement in the decomposition of hydrogen peroxide by ferrous and ferric-nitrilotriacetate complexes at neutral pH.
    Dao YH; De Laat J
    Water Res; 2011 May; 45(11):3309-17. PubMed ID: 21514949
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Suppressive effects of dietary curcumin on the increased activity of renal ornithine decarboxylase in mice treated with a renal carcinogen, ferric nitrilotriacetate.
    Okazaki Y; Iqbal M; Okada S
    Biochim Biophys Acta; 2005 Jun; 1740(3):357-66. PubMed ID: 15949703
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Abiotic reduction of nitroaromatic compounds by Fe(II) associated with iron oxides and humic acid.
    Luan F; Xie L; Li J; Zhou Q
    Chemosphere; 2013 May; 91(7):1035-41. PubMed ID: 23422171
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Dual Role of Humic Substances As Electron Donor and Shuttle for Dissimilatory Iron Reduction.
    Stern N; Mejia J; He S; Yang Y; Ginder-Vogel M; Roden EE
    Environ Sci Technol; 2018 May; 52(10):5691-5699. PubMed ID: 29658273
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Transforming growth factor-alpha expression of renal proximal tubules in Wistar rats treated with ferric and aluminum nitrilotriacetate.
    Deguchi J; Kawabata T; Kondo A; Okada S
    Jpn J Cancer Res; 1993 Jun; 84(6):649-55. PubMed ID: 8340253
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Influence of pO
    Chen C; Meile C; Wilmoth J; Barcellos D; Thompson A
    Environ Sci Technol; 2018 Jul; 52(14):7709-7719. PubMed ID: 29890827
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Carbon and hydrogen isotope fractionation during anaerobic toluene oxidation by Geobacter metallireducens with different Fe(III) phases as terminal electron acceptors.
    Tobler NB; Hofstetter TB; Schwarzenbach RP
    Environ Sci Technol; 2008 Nov; 42(21):7786-92. PubMed ID: 19031861
    [TBL] [Abstract][Full Text] [Related]  

  • 68. A humic substance analogue AQDS stimulates Geobacter sp. abundance and enhances pentachlorophenol transformation in a paddy soil.
    Chen M; Tong H; Liu C; Chen D; Li F; Qiao J
    Chemosphere; 2016 Oct; 160():141-8. PubMed ID: 27372263
    [TBL] [Abstract][Full Text] [Related]  

  • 69. DNA single- and double-strand breaks produced by ferric nitrilotriacetate in relation to renal tubular carcinogenesis.
    Toyokuni S; Sagripanti JL
    Carcinogenesis; 1993 Feb; 14(2):223-7. PubMed ID: 8435863
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Anaerobic bioreduction of elemental sulfur improves bioavailability of Fe (III) oxides for bioremediation.
    Liu Y; Zhao Q; Liao C; Tian L; Yan X; Li N; Wang X
    Sci Total Environ; 2023 Feb; 858(Pt 2):159794. PubMed ID: 36374751
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Polymerization of catechin catalyzed by Mn-, Fe- and Al-oxides.
    Chen YM; Tsao TM; Liu CC; Huang PM; Wang MK
    Colloids Surf B Biointerfaces; 2010 Nov; 81(1):217-23. PubMed ID: 20674290
    [TBL] [Abstract][Full Text] [Related]  

  • 72. [Effects of carbon source and flooding time on microbial Fe(III) reduction in paddy soils].
    Yi WJ; Qu D; Wang Q
    Ying Yong Sheng Tai Xue Bao; 2010 Dec; 21(12):3133-40. PubMed ID: 21443000
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Antimony speciation and mobility during Fe(II)-induced transformation of humic acid-antimony(V)-iron(III) coprecipitates.
    Karimian N; Burton ED; Johnston SG
    Environ Pollut; 2019 Nov; 254(Pt B):113112. PubMed ID: 31479811
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Isolation, characterization and gene sequence analysis of a membrane-associated 89 kDa Fe(III) reducing cytochrome c from Geobacter sulfurreducens.
    Magnuson TS; Isoyama N; Hodges-Myerson AL; Davidson G; Maroney MJ; Geesey GG; Lovley DR
    Biochem J; 2001 Oct; 359(Pt 1):147-52. PubMed ID: 11563978
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Influence of Oxygen and Nitrate on Fe (Hydr)oxide Mineral Transformation and Soil Microbial Communities during Redox Cycling.
    Mejia J; Roden EE; Ginder-Vogel M
    Environ Sci Technol; 2016 Apr; 50(7):3580-8. PubMed ID: 26949922
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Polarity and Molecular Weight of Compost-Derived Humic Acids Impact Bio-dechlorination of Pentachlorophenol.
    Yuan Y; Xi B; He XS; Tan W; Zhang H; Li D; Yang C; Zhao X
    J Agric Food Chem; 2019 May; 67(17):4726-4733. PubMed ID: 30964976
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Competition of Fe(III) reduction and methanogenesis in an acidic fen.
    Reiche M; Torburg G; Küsel K
    FEMS Microbiol Ecol; 2008 Jul; 65(1):88-101. PubMed ID: 18559015
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Fe(III)-enhanced Azo Reduction by Shewanella decolorationis S12.
    Xu M; Guo J; Kong X; Chen X; Sun G
    Appl Microbiol Biotechnol; 2007 Apr; 74(6):1342-9. PubMed ID: 17216448
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Enhancing anaerobic degradation of phenol to methane via solubilizing Fe(III) oxides for dissimilatory iron reduction with organic chelates.
    Li Y; Ren C; Zhao Z; Yu Q; Zhao Z; Liu L; Zhang Y; Feng Y
    Bioresour Technol; 2019 Nov; 291():121858. PubMed ID: 31377515
    [TBL] [Abstract][Full Text] [Related]  

  • 80. [Anaerobic reduction of ferric iron by hydrogen bacteria].
    Balashova VV; Zavarzin GA
    Mikrobiologiia; 1979; 48(5):773-78. PubMed ID: 502905
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.