These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 12957911)

  • 81. Sex hormone-dependent renal cell carcinogenesis induced by ferric nitrilotriacetate in Wistar rats.
    Deguchi J; Miyamoto M; Okada S
    Jpn J Cancer Res; 1995 Nov; 86(11):1068-71. PubMed ID: 8567398
    [TBL] [Abstract][Full Text] [Related]  

  • 82. Shewanella oneidensis MR-1 uses overlapping pathways for iron reduction at a distance and by direct contact under conditions relevant for Biofilms.
    Lies DP; Hernandez ME; Kappler A; Mielke RE; Gralnick JA; Newman DK
    Appl Environ Microbiol; 2005 Aug; 71(8):4414-26. PubMed ID: 16085832
    [TBL] [Abstract][Full Text] [Related]  

  • 83. Spectral analysis of Fe(III)-complex reduction by hemoglobin: possible mechanisms of interaction.
    Harrington JP; Hicks RL
    Int J Biochem; 1994 Sep; 26(9):1111-7. PubMed ID: 7988735
    [TBL] [Abstract][Full Text] [Related]  

  • 84. Dissimilatory iron reduction in Escherichia coli: identification of CymA of Shewanella oneidensis and NapC of E. coli as ferric reductases.
    Gescher JS; Cordova CD; Spormann AM
    Mol Microbiol; 2008 May; 68(3):706-19. PubMed ID: 18394146
    [TBL] [Abstract][Full Text] [Related]  

  • 85. alpha-Tocopherol (vitamin-E) ameliorates ferric nitrilotriacetate (Fe-NTA)-dependent renal proliferative response and toxicity: diminution of oxidative stress.
    Iqbal M; Rezazadeh H; Ansar S; Athar M
    Hum Exp Toxicol; 1998 Mar; 17(3):163-71. PubMed ID: 9587785
    [TBL] [Abstract][Full Text] [Related]  

  • 86. Polarity and molecular weight of compost-derived humic acid affect Fe(III) oxides reduction.
    Yuan Y; He X; Xi B; Li D; Gao R; Tan W; Zhang H; Yang C; Zhao X
    Chemosphere; 2018 Oct; 208():77-83. PubMed ID: 29860147
    [TBL] [Abstract][Full Text] [Related]  

  • 87. Thiobarbituric acid-reactive substance formation of rat kidney brush border membrane vesicles induced by ferric nitrilotriacetate.
    Hamazaki S; Okada S; Toyokuni S; Midorikawa O
    Arch Biochem Biophys; 1989 Nov; 274(2):348-54. PubMed ID: 2802614
    [TBL] [Abstract][Full Text] [Related]  

  • 88. Outer membrane c-type cytochromes required for Fe(III) and Mn(IV) oxide reduction in Geobacter sulfurreducens.
    Mehta T; Coppi MV; Childers SE; Lovley DR
    Appl Environ Microbiol; 2005 Dec; 71(12):8634-41. PubMed ID: 16332857
    [TBL] [Abstract][Full Text] [Related]  

  • 89. Ferric iron reduction by Desulfovibrio vulgaris Hildenborough wild type and energy metabolism mutants.
    Park HS; Lin S; Voordouw G
    Antonie Van Leeuwenhoek; 2008; 93(1-2):79-85. PubMed ID: 17588123
    [TBL] [Abstract][Full Text] [Related]  

  • 90. Biodegradation of metal-nitrilotriacetate complexes by a Pseudomonas species: mechanism of reaction.
    Firestone MK; Tiedje JM
    Appl Microbiol; 1975 Jun; 29(6):758-64. PubMed ID: 1155932
    [TBL] [Abstract][Full Text] [Related]  

  • 91. A renal carcinogen ferric nitrilotriacetate mediates a temporary accumulation of aldehyde-modified proteins within cytosolic compartment of rat kidney.
    Uchida K; Fukuda A; Kawakishi S; Hiai H; Toyokuni S
    Arch Biochem Biophys; 1995 Mar; 317(2):405-11. PubMed ID: 7893156
    [TBL] [Abstract][Full Text] [Related]  

  • 92. Kinetic behavior of Fe(o,o-EDDHA)-humic substance mixtures in several soil components and in calcareous soils.
    Cerdán M; Alcañiz S; Juárez M; Jordá JD; Bermúdez D
    J Agric Food Chem; 2007 Oct; 55(22):9159-69. PubMed ID: 17915959
    [TBL] [Abstract][Full Text] [Related]  

  • 93. In vitro transformation of rat renal cells by treatment with ferric nitrilotriacetate.
    Kakehashi C; Mori M; Kawabata T; Okada S
    Acta Med Okayama; 2001 Apr; 55(2):97-103. PubMed ID: 11332205
    [TBL] [Abstract][Full Text] [Related]  

  • 94. Anaerobic transformation of DDT related to iron(III) reduction and microbial community structure in paddy soils.
    Chen M; Cao F; Li F; Liu C; Tong H; Wu W; Hu M
    J Agric Food Chem; 2013 Mar; 61(9):2224-33. PubMed ID: 23402620
    [TBL] [Abstract][Full Text] [Related]  

  • 95. Protection by alpha G-rutin, a water-soluble antioxidant flavonoid, against renal damage in mice treated with ferric nitrilotriacetate.
    Shimoi K; Shen B; Toyokuni S; Mochizuki R; Furugori M; Kinae N
    Jpn J Cancer Res; 1997 May; 88(5):453-60. PubMed ID: 9247601
    [TBL] [Abstract][Full Text] [Related]  

  • 96. Oxygen reduction and lipid peroxidation by iron chelates with special reference to ferric nitrilotriacetate.
    Hamazaki S; Okada S; Li JL; Toyokuni S; Midorikawa O
    Arch Biochem Biophys; 1989 Jul; 272(1):10-7. PubMed ID: 2500058
    [TBL] [Abstract][Full Text] [Related]  

  • 97. Anaerobic degradation of aromatic compounds coupled to Fe(III) reduction by Ferroglobus placidus.
    Tor JM; Lovley DR
    Environ Microbiol; 2001 Apr; 3(4):281-7. PubMed ID: 11359514
    [TBL] [Abstract][Full Text] [Related]  

  • 98. Insight to Microbial Fe(III) Reduction Mediated by Redox-Active Humic Acids with Varied Redox Potentials.
    Duan J; Xu Z; Yang Z; Jiang J
    Int J Environ Res Public Health; 2021 Jun; 18(13):. PubMed ID: 34202887
    [TBL] [Abstract][Full Text] [Related]  

  • 99. Electrochemical regeneration of Fe(III) to support growth on anaerobic iron respiration.
    Ohmura N; Matsumoto N; Sasaki K; Saiki H
    Appl Environ Microbiol; 2002 Jan; 68(1):405-7. PubMed ID: 11772652
    [TBL] [Abstract][Full Text] [Related]  

  • 100. Rapid Anaerobic Benzene Oxidation with a Variety of Chelated Fe(III) Forms.
    Lovley DR; Woodward JC; Chapelle FH
    Appl Environ Microbiol; 1996 Jan; 62(1):288-91. PubMed ID: 16535218
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.