These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

64 related articles for article (PubMed ID: 12958435)

  • 1. Molecular biology of the blood-brain barrier.
    Pardridge WM
    Methods Mol Med; 2003; 89():385-99. PubMed ID: 12958435
    [No Abstract]   [Full Text] [Related]  

  • 2. Pathophysiology of the blood-brain barrier: animal models and methods.
    Hawkins BT; Egleton RD
    Curr Top Dev Biol; 2008; 80():277-309. PubMed ID: 17950377
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Blood-brain barrier genomics and the use of endogenous transporters to cause drug penetration into the brain.
    Pardridge WM
    Curr Opin Drug Discov Devel; 2003 Sep; 6(5):683-91. PubMed ID: 14579518
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Inter-individual variation in brain phenylalanine concentration in patients with PKU is not caused by genetic variation in the 4F2hc/LAT1 complex.
    Møller LB; Paulsen M; Koch R; Moats R; Guldberg P; Güttler F
    Mol Genet Metab; 2005 Dec; 86 Suppl 1():S119-23. PubMed ID: 16176881
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Culture-induced changes in blood-brain barrier transcriptome: implications for amino-acid transporters in vivo.
    Lyck R; Ruderisch N; Moll AG; Steiner O; Cohen CD; Engelhardt B; Makrides V; Verrey F
    J Cereb Blood Flow Metab; 2009 Sep; 29(9):1491-502. PubMed ID: 19491922
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Blood-brain barrier genomics and proteomics: elucidating phenotype, identifying disease targets and enabling brain drug delivery.
    Calabria AR; Shusta EV
    Drug Discov Today; 2006 Sep; 11(17-18):792-9. PubMed ID: 16935746
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Human LAT1 single nucleotide polymorphism N230K does not alter phenylalanine transport.
    Boado RJ; Li JY; Wise P; Pardridge WM
    Mol Genet Metab; 2004 Dec; 83(4):306-11. PubMed ID: 15589117
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Large neutral amino acid transporter enables brain drug delivery via prodrugs.
    Gynther M; Laine K; Ropponen J; Leppänen J; Mannila A; Nevalainen T; Savolainen J; Järvinen T; Rautio J
    J Med Chem; 2008 Feb; 51(4):932-6. PubMed ID: 18217702
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Retinal selectivity of gene expression in rat retinal versus brain capillary endothelial cell lines by differential display analysis.
    Tomi M; Abukawa H; Nagai Y; Hata T; Takanaga H; Ohtsuki S; Terasaki T; Hosoya K
    Mol Vis; 2004 Aug; 10():537-43. PubMed ID: 15316464
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Distribution volume of radiolabeled large neutral amino acids in brain tissue.
    Huang SC; Stout DB; Yee RE; Satyamurthy N; Barrio JR
    J Cereb Blood Flow Metab; 1998 Dec; 18(12):1288-93. PubMed ID: 9850140
    [TBL] [Abstract][Full Text] [Related]  

  • 11. L-type amino acid transporter 1-mediated L-leucine transport at the inner blood-retinal barrier.
    Tomi M; Mori M; Tachikawa M; Katayama K; Terasaki T; Hosoya K
    Invest Ophthalmol Vis Sci; 2005 Jul; 46(7):2522-30. PubMed ID: 15980244
    [TBL] [Abstract][Full Text] [Related]  

  • 12. LAT1-mediated prodrug uptake: a way to breach the blood-brain barrier?
    Rautio J; Gynther M; Laine K
    Ther Deliv; 2013 Mar; 4(3):281-4. PubMed ID: 23442072
    [No Abstract]   [Full Text] [Related]  

  • 13. Functional characterization and comparison of the outer blood-retina barrier and the blood-brain barrier.
    Steuer H; Jaworski A; Elger B; Kaussmann M; Keldenich J; Schneider H; Stoll D; Schlosshauer B
    Invest Ophthalmol Vis Sci; 2005 Mar; 46(3):1047-53. PubMed ID: 15728564
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dominant expression of androgen receptors and their functional regulation of organic anion transporter 3 in rat brain capillary endothelial cells; comparison of gene expression between the blood-brain and -retinal barriers.
    Ohtsuki S; Tomi M; Hata T; Nagai Y; Hori S; Mori S; Hosoya K; Terasaki T
    J Cell Physiol; 2005 Sep; 204(3):896-900. PubMed ID: 15795901
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Immunoblot detection of brain vascular proteins.
    Matson CT; Drewes LR
    Methods Mol Med; 2003; 89():479-87. PubMed ID: 12958441
    [No Abstract]   [Full Text] [Related]  

  • 16. In situ brain perfusion technique.
    Smith QR; Allen DD
    Methods Mol Med; 2003; 89():209-18. PubMed ID: 12958422
    [No Abstract]   [Full Text] [Related]  

  • 17. Isolation and characterization of cerebral microvascular pericytes.
    Dore-Duffy P
    Methods Mol Med; 2003; 89():375-82. PubMed ID: 12958434
    [No Abstract]   [Full Text] [Related]  

  • 18. Novel drug discovery and molecular biological methods, via DNA, RNA and protein changes using structure-function transitions: Transitional structural chemogenomics, transitional structural chemoproteomics and novel multi-stranded nucleic acid microarray.
    Gagna CE; Lambert WC
    Med Hypotheses; 2006; 67(5):1099-114. PubMed ID: 16828979
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Single-pass dual-label indicator method. Blood-to-brain transport of glucose and short-chain monocarboxylic acids.
    Puchowicz MA; Xu K; LaManna JC
    Methods Mol Med; 2003; 89():265-76. PubMed ID: 12958426
    [No Abstract]   [Full Text] [Related]  

  • 20. Cationic amino acid transport across the blood-brain barrier is mediated exclusively by system y+.
    O'Kane RL; Viña JR; Simpson I; Zaragozá R; Mokashi A; Hawkins RA
    Am J Physiol Endocrinol Metab; 2006 Aug; 291(2):E412-9. PubMed ID: 16569760
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.