These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
146 related articles for article (PubMed ID: 12959523)
21. Novel PCB-degrading Rhodococcus strains able to promote plant growth for assisted rhizoremediation of historically polluted soils. Vergani L; Mapelli F; Suman J; Cajthaml T; Uhlik O; Borin S PLoS One; 2019; 14(8):e0221253. PubMed ID: 31437185 [TBL] [Abstract][Full Text] [Related]
22. Dynamics of indigenous bacterial communities associated with crude oil degradation in soil microcosms during nutrient-enhanced bioremediation. Chikere CB; Surridge K; Okpokwasili GC; Cloete TE Waste Manag Res; 2012 Mar; 30(3):225-36. PubMed ID: 21824988 [TBL] [Abstract][Full Text] [Related]
23. Phytoremediation of soil contaminated with PCBs using different plants and their associated microbial communities. Pino NJ; Múnera LM; Peñuela GA Int J Phytoremediation; 2019; 21(4):316-324. PubMed ID: 30648402 [TBL] [Abstract][Full Text] [Related]
24. Molecular diagnostics and chemical analysis for assessing biodegradation of polychlorinated biphenyls in contaminated soils. Layton AC; Lajoie CA; Easter JP; Jernigan R; Sanseverino J; Sayler GS J Ind Microbiol; 1994 Nov; 13(6):392-401. PubMed ID: 7765670 [TBL] [Abstract][Full Text] [Related]
25. Bioaugmentation of a historically contaminated soil by polychlorinated biphenyls with Lentinus tigrinus. Federici E; Giubilei M; Santi G; Zanaroli G; Negroni A; Fava F; Petruccioli M; D'Annibale A Microb Cell Fact; 2012 Mar; 11():35. PubMed ID: 22443185 [TBL] [Abstract][Full Text] [Related]
26. Microbial diversity assessment of polychlorinated biphenyl-contaminated soils and the biostimulation and bioaugmentation processes. Cervantes-González E; Guevara-García MA; García-Mena J; Ovando-Medina VM Environ Monit Assess; 2019 Jan; 191(2):118. PubMed ID: 30706145 [TBL] [Abstract][Full Text] [Related]
27. Rhizosphere microbial activity during phytoremediation of diesel-contaminated soil. Kim J; Kang SH; Min KA; Cho KS; Lee IS J Environ Sci Health A Tox Hazard Subst Environ Eng; 2006; 41(11):2503-16. PubMed ID: 17000542 [TBL] [Abstract][Full Text] [Related]
28. Impact of clay mineral, wood sawdust or root organic matter on the bacterial and fungal community structures in two aged PAH-contaminated soils. Cébron A; Beguiristain T; Bongoua-Devisme J; Denonfoux J; Faure P; Lorgeoux C; Ouvrard S; Parisot N; Peyret P; Leyval C Environ Sci Pollut Res Int; 2015 Sep; 22(18):13724-38. PubMed ID: 25616383 [TBL] [Abstract][Full Text] [Related]
29. Interactions of earthworms with indigenous and bioaugmented PCB-degrading bacteria. Luepromchai E; Singer AC; Yang CH; Crowley DE FEMS Microbiol Ecol; 2002 Sep; 41(3):191-7. PubMed ID: 19709253 [TBL] [Abstract][Full Text] [Related]
30. Aerobic biodegradation of biphenyl and polychlorinated biphenyls by Arctic soil microorganisms. Mohn WW; Westerberg K; Cullen WR; Reimer KJ Appl Environ Microbiol; 1997 Sep; 63(9):3378-84. PubMed ID: 9292988 [TBL] [Abstract][Full Text] [Related]
31. Remediation of polychlorinated biphenyl-contaminated soil by using a combination of ryegrass, arbuscular mycorrhizal fungi and earthworms. Lu YF; Lu M; Peng F; Wan Y; Liao MH Chemosphere; 2014 Jul; 106():44-50. PubMed ID: 24457052 [TBL] [Abstract][Full Text] [Related]
32. Bioaugmentation of a polychlorobiphenyl contaminated soil with two aerobic bacterial strains. Egorova DO; Demakov VA; Plotnikova EG J Hazard Mater; 2013 Oct; 261():378-86. PubMed ID: 23973470 [TBL] [Abstract][Full Text] [Related]
33. Construction and applications of DNA probes for detection of polychlorinated biphenyl-degrading genotypes in toxic organic-contaminated soil environments. Walia S; Khan A; Rosenthal N Appl Environ Microbiol; 1990 Jan; 56(1):254-9. PubMed ID: 2106826 [TBL] [Abstract][Full Text] [Related]
34. Biphenyl-metabolizing bacteria in the rhizosphere of horseradish and bulk soil contaminated by polychlorinated biphenyls as revealed by stable isotope probing. Uhlik O; Jecna K; Mackova M; Vlcek C; Hroudova M; Demnerova K; Paces V; Macek T Appl Environ Microbiol; 2009 Oct; 75(20):6471-7. PubMed ID: 19700551 [TBL] [Abstract][Full Text] [Related]
36. Changes in bacterial populations and in biphenyl dioxygenase gene diversity in a polychlorinated biphenyl-polluted soil after introduction of willow trees for rhizoremediation. de Cárcer DA; Martín M; Karlson U; Rivilla R Appl Environ Microbiol; 2007 Oct; 73(19):6224-32. PubMed ID: 17693557 [TBL] [Abstract][Full Text] [Related]
37. The introduction of genetically modified microorganisms designed for rhizoremediation induces changes on native bacteria in the rhizosphere but not in the surrounding soil. de Cárcer DA; Martín M; Mackova M; Macek T; Karlson U; Rivilla R ISME J; 2007 Jul; 1(3):215-23. PubMed ID: 18043632 [TBL] [Abstract][Full Text] [Related]
38. Potential for phytoremediation of polychlorinated biphenyl-(PCB-)contaminated soil. Zeeb BA; Amphlett JS; Rutter A; Reimer KJ Int J Phytoremediation; 2006; 8(3):199-221. PubMed ID: 17120525 [TBL] [Abstract][Full Text] [Related]
39. Alginate beads as a storage, delivery and containment system for genetically modified PCB degrader and PCB biosensor derivatives of Pseudomonas fluorescens F113. Power B; Liu X; Germaine KJ; Ryan D; Brazil D; Dowling DN J Appl Microbiol; 2011 May; 110(5):1351-8. PubMed ID: 21395945 [TBL] [Abstract][Full Text] [Related]
40. Autochthonous ascomycetes in depollution of polychlorinated biphenyls contaminated soil and sediment. Sage L; Périgon S; Faure M; Gaignaire C; Abdelghafour M; Mehu J; Geremia RA; Mouhamadou B Chemosphere; 2014 Sep; 110():62-9. PubMed ID: 24880600 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]