BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

385 related articles for article (PubMed ID: 12959619)

  • 21. AMPK controls exercise endurance, mitochondrial oxidative capacity, and skeletal muscle integrity.
    Lantier L; Fentz J; Mounier R; Leclerc J; Treebak JT; Pehmøller C; Sanz N; Sakakibara I; Saint-Amand E; Rimbaud S; Maire P; Marette A; Ventura-Clapier R; Ferry A; Wojtaszewski JF; Foretz M; Viollet B
    FASEB J; 2014 Jul; 28(7):3211-24. PubMed ID: 24652947
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Impaired exercise tolerance, mitochondrial biogenesis, and muscle fiber maintenance in miR-133a-deficient mice.
    Nie Y; Sato Y; Wang C; Yue F; Kuang S; Gavin TP
    FASEB J; 2016 Nov; 30(11):3745-3758. PubMed ID: 27458245
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Adaptations of skeletal muscle to prolonged, intense endurance training.
    Hawley JA
    Clin Exp Pharmacol Physiol; 2002 Mar; 29(3):218-22. PubMed ID: 11906487
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Mechanisms of exercise-induced mitochondrial biogenesis in skeletal muscle.
    Hood DA
    Appl Physiol Nutr Metab; 2009 Jun; 34(3):465-72. PubMed ID: 19448716
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Contribution of the Mitochondria to Locomotor Muscle Dysfunction in Patients With COPD.
    Taivassalo T; Hussain SN
    Chest; 2016 May; 149(5):1302-12. PubMed ID: 26836890
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The scientific basis for high-intensity interval training: optimising training programmes and maximising performance in highly trained endurance athletes.
    Laursen PB; Jenkins DG
    Sports Med; 2002; 32(1):53-73. PubMed ID: 11772161
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Nutritional strategies to modulate the adaptive response to endurance training.
    Hawley JA
    Nestle Nutr Inst Workshop Ser; 2013; 75():1-14. PubMed ID: 23765346
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Mitochondrial biogenesis and angiogenesis in skeletal muscle of the elderly.
    Iversen N; Krustrup P; Rasmussen HN; Rasmussen UF; Saltin B; Pilegaard H
    Exp Gerontol; 2011 Aug; 46(8):670-8. PubMed ID: 21504786
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Inhibition of Oxidative Stress by Antioxidant Supplementation Does Not Limit Muscle Mitochondrial Biogenesis or Endurance Capacity in Rats.
    Kim JC; Park GD; Kim SH
    J Nutr Sci Vitaminol (Tokyo); 2017; 63(5):277-283. PubMed ID: 29225311
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Exercise improves mitochondrial and redox-regulated stress responses in the elderly: better late than never!
    Cobley JN; Moult PR; Burniston JG; Morton JP; Close GL
    Biogerontology; 2015 Apr; 16(2):249-64. PubMed ID: 25537184
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Gene expression in skeletal muscle of coronary artery disease patients after concentric and eccentric endurance training.
    Zoll J; Steiner R; Meyer K; Vogt M; Hoppeler H; Flück M
    Eur J Appl Physiol; 2006 Mar; 96(4):413-22. PubMed ID: 16311763
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Adaptations of skeletal muscle to endurance exercise and their metabolic consequences.
    Holloszy JO; Coyle EF
    J Appl Physiol Respir Environ Exerc Physiol; 1984 Apr; 56(4):831-8. PubMed ID: 6373687
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Perm1 enhances mitochondrial biogenesis, oxidative capacity, and fatigue resistance in adult skeletal muscle.
    Cho Y; Hazen BC; Gandra PG; Ward SR; Schenk S; Russell AP; Kralli A
    FASEB J; 2016 Feb; 30(2):674-87. PubMed ID: 26481306
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Acute and chronic responses of skeletal muscle to endurance and sprint exercise. A review.
    Abernethy PJ; Thayer R; Taylor AW
    Sports Med; 1990 Dec; 10(6):365-89. PubMed ID: 2291032
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Muscle mechanics: adaptations with exercise-training.
    Fitts RH; Widrick JJ
    Exerc Sport Sci Rev; 1996; 24():427-73. PubMed ID: 8744258
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Ursolic acid induces mitochondrial biogenesis through the activation of AMPK and PGC-1 in C2C12 myotubes: a possible mechanism underlying its beneficial effect on exercise endurance.
    Chen J; Wong HS; Leong PK; Leung HY; Chan WM; Ko KM
    Food Funct; 2017 Jul; 8(7):2425-2436. PubMed ID: 28675237
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Interaction between signalling pathways involved in skeletal muscle responses to endurance exercise.
    Koulmann N; Bigard AX
    Pflugers Arch; 2006 May; 452(2):125-39. PubMed ID: 16437222
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Protein Availability and Satellite Cell Dynamics in Skeletal Muscle.
    Shamim B; Hawley JA; Camera DM
    Sports Med; 2018 Jun; 48(6):1329-1343. PubMed ID: 29557519
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The intersection of exercise and aging on mitochondrial protein quality control.
    Zhang Y; Oliveira AN; Hood DA
    Exp Gerontol; 2020 Mar; 131():110824. PubMed ID: 31911185
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Improvements in exercise performance with high-intensity interval training coincide with an increase in skeletal muscle mitochondrial content and function.
    Jacobs RA; Flück D; Bonne TC; Bürgi S; Christensen PM; Toigo M; Lundby C
    J Appl Physiol (1985); 2013 Sep; 115(6):785-93. PubMed ID: 23788574
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 20.