BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

242 related articles for article (PubMed ID: 12959757)

  • 1. Arterial pulsation-driven cerebrospinal fluid flow in the perivascular space: a computational model.
    Bilston LE; Fletcher DF; Brodbelt AR; Stoodley MA
    Comput Methods Biomech Biomed Engin; 2003 Aug; 6(4):235-41. PubMed ID: 12959757
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The influence of the relative timing of arterial and subarachnoid space pulse waves on spinal perivascular cerebrospinal fluid flow as a possible factor in syrinx development.
    Bilston LE; Stoodley MA; Fletcher DF
    J Neurosurg; 2010 Apr; 112(4):808-13. PubMed ID: 19522574
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Arterial pulsation-dependent perivascular cerebrospinal fluid flow into the central canal in the sheep spinal cord.
    Stoodley MA; Brown SA; Brown CJ; Jones NR
    J Neurosurg; 1997 Apr; 86(4):686-93. PubMed ID: 9120633
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sustained high-pressure in the spinal subarachnoid space while arterial expansion is low may be linked to syrinx development.
    Clarke EC; Fletcher DF; Bilston LE
    Comput Methods Biomech Biomed Engin; 2017 Apr; 20(5):457-467. PubMed ID: 27712091
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Phase offset between arterial pulsations and subarachnoid space pressure fluctuations are unlikely to drive periarterial cerebrospinal fluid flow.
    Martinac AD; Fletcher DF; Bilston LE
    Biomech Model Mechanobiol; 2021 Oct; 20(5):1751-1766. PubMed ID: 34275063
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Altered subarachnoid space compliance and fluid flow in an animal model of posttraumatic syringomyelia.
    Brodbelt AR; Stoodley MA; Watling AM; Tu J; Burke S; Jones NR
    Spine (Phila Pa 1976); 2003 Oct; 28(20):E413-9. PubMed ID: 14560096
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fluid flow in an animal model of post-traumatic syringomyelia.
    Brodbelt AR; Stoodley MA; Watling AM; Tu J; Jones NR
    Eur Spine J; 2003 Jun; 12(3):300-6. PubMed ID: 12800004
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Flow of cerebrospinal fluid is driven by arterial pulsations and is reduced in hypertension.
    Mestre H; Tithof J; Du T; Song W; Peng W; Sweeney AM; Olveda G; Thomas JH; Nedergaard M; Kelley DH
    Nat Commun; 2018 Nov; 9(1):4878. PubMed ID: 30451853
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A coupled hydrodynamic model of the cardiovascular and cerebrospinal fluid system.
    Martin BA; Reymond P; Novy J; Balédent O; Stergiopulos N
    Am J Physiol Heart Circ Physiol; 2012 Apr; 302(7):H1492-509. PubMed ID: 22268106
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Focal spinal arachnoiditis increases subarachnoid space pressure: a computational study.
    Bilston LE; Fletcher DF; Stoodley MA
    Clin Biomech (Bristol, Avon); 2006 Jul; 21(6):579-84. PubMed ID: 16530899
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cerebrospinal fluid flow dynamics in the central nervous system.
    Sweetman B; Linninger AA
    Ann Biomed Eng; 2011 Jan; 39(1):484-96. PubMed ID: 20737291
    [TBL] [Abstract][Full Text] [Related]  

  • 12. New understanding of the role of cerebrospinal fluid: offsetting of arterial and brain pulsation and self-dissipation of cerebrospinal fluid pulsatile flow energy.
    Min KJ; Yoon SH; Kang JK
    Med Hypotheses; 2011 Jun; 76(6):884-6. PubMed ID: 21458167
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cerebrospinal fluid flow driven by arterial pulsations in axisymmetric perivascular spaces: Analogy with Taylor's swimming sheet.
    Yokoyama N; Takeishi N; Wada S
    J Theor Biol; 2021 Aug; 523():110709. PubMed ID: 33862088
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The effects of variation in the arterial pulse waveform on perivascular flow.
    Lloyd RA; Stoodley MA; Fletcher DF; Bilston LE
    J Biomech; 2019 Jun; 90():65-70. PubMed ID: 31047694
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quantitative analysis of cervical CSF and syrinx fluid pulsations.
    Itabashi T
    Nihon Seikeigeka Gakkai Zasshi; 1990 Jul; 64(7):523-33. PubMed ID: 2230418
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A lumped-parameter model of the cerebrospinal system for investigating arterial-driven flow in posttraumatic syringomyelia.
    Elliott NS; Lockerby DA; Brodbelt AR
    Med Eng Phys; 2011 Sep; 33(7):874-82. PubMed ID: 20833093
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The role of altered impedance in the pathophysiology of normal pressure hydrocephalus, Alzheimer's disease and syringomyelia.
    Bateman GA
    Med Hypotheses; 2004; 63(6):980-5. PubMed ID: 15504565
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Numerical modeling of 1D arterial networks coupled with a lumped parameters description of the heart.
    Formaggia L; Lamponi D; Tuveri M; Veneziani A
    Comput Methods Biomech Biomed Engin; 2006 Oct; 9(5):273-88. PubMed ID: 17132614
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Lumbar cerebrospinal fluid pulse wave rising from pulsations of both the spinal cord and the brain in humans.
    Nakamura K; Urayama K; Hoshino Y
    Spinal Cord; 1997 Nov; 35(11):735-9. PubMed ID: 9392043
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A coaxial tube model of the cerebrospinal fluid pulse propagation in the spinal column.
    Cirovic S
    J Biomech Eng; 2009 Feb; 131(2):021008. PubMed ID: 19102567
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.