These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 12960551)

  • 1. Ca2+- and myosin phosphorylation-independent relaxation by halothane in K+-depolarized rat mesenteric arteries.
    Tsuneyoshi I; Zhang D; Boyle WA
    Anesthesiology; 2003 Sep; 99(3):656-65. PubMed ID: 12960551
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Volatile anesthetic actions on contractile proteins in membrane-permeabilized small mesenteric arteries.
    Akata T; Boyle WA
    Anesthesiology; 1995 Mar; 82(3):700-12. PubMed ID: 7879938
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mechanisms of Ca2+ sensitization of force production by noradrenaline in rat mesenteric small arteries.
    Buus CL; Aalkjaer C; Nilsson H; Juul B; Møller JV; Mulvany MJ
    J Physiol; 1998 Jul; 510 ( Pt 2)(Pt 2):577-90. PubMed ID: 9706005
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mechanisms of vasoconstriction induced by endothelin-1 in smooth muscle of rabbit mesenteric artery.
    Yoshida M; Suzuki A; Itoh T
    J Physiol; 1994 Jun; 477(Pt 2):253-65. PubMed ID: 7932217
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Endothelium-independent vasoconstricting and vasodilating actions of halothane on rat mesenteric resistance blood vessels.
    Boyle WA; Maher GM
    Anesthesiology; 1995 Jan; 82(1):221-35. PubMed ID: 7832305
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of calyculin A on tension and myosin phosphorylation in skinned smooth muscle of the rabbit mesenteric artery.
    Suzuki A; Itoh T
    Br J Pharmacol; 1993 Jul; 109(3):703-12. PubMed ID: 8395295
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of a myosin light chain kinase inhibitor, wortmannin, on cytoplasmic Ca2+ levels, myosin light chain phosphorylation and force in vascular smooth muscle.
    Takayama M; Ozaki H; Karaki H
    Naunyn Schmiedebergs Arch Pharmacol; 1996 Jul; 354(2):120-7. PubMed ID: 8857588
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of volatile anesthetics with and without verapamil on intracellular activity in vascular smooth muscle.
    Namba H; Tsuchida H
    Anesthesiology; 1996 Jun; 84(6):1465-74. PubMed ID: 8669688
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Multiple actions of halothane on contractile response to noradrenaline in isolated mesenteric resistance arteries.
    Yoshino J; Akata T; Izumi K; Takahashi S
    Naunyn Schmiedebergs Arch Pharmacol; 2005 Jun; 371(6):500-15. PubMed ID: 16012873
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Different effects of halothane, isoflurane and sevoflurane on sarcoplasmic reticulum of vascular smooth muscle in dog mesenteric artery.
    Yamamoto M; Hatano Y; Kakuyama M; Nakamura K; Tachibana T; Maeda H; Mori K
    Acta Anaesthesiol Scand; 1997 Mar; 41(3):376-80. PubMed ID: 9113183
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mechanisms of direct inhibitory action of isoflurane on vascular smooth muscle of mesenteric resistance arteries.
    Akata T; Kanna T; Yoshino J; Takahashi S
    Anesthesiology; 2003 Sep; 99(3):666-77. PubMed ID: 12960552
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Halothane inhibition of acetylcholine-induced relaxation in rat mesenteric artery and aorta.
    Iranami H; Hatano Y; Tsukiyama Y; Yamamoto M; Maeda H; Mizumoto K
    Can J Anaesth; 1997 Nov; 44(11):1196-203. PubMed ID: 9398962
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of a peptide inhibitor of protein kinase C on G-protein-mediated increase in myofilament Ca(2+)-sensitivity in rabbit arterial skinned muscle.
    Itoh T; Suzuki A; Watanabe Y
    Br J Pharmacol; 1994 Jan; 111(1):311-7. PubMed ID: 8012712
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dual actions of halothane on intracellular calcium stores of vascular smooth muscle.
    Akata T; Boyle W
    Anesthesiology; 1996 Mar; 84(3):580-95. PubMed ID: 8659787
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Inhibitory effect of forskolin on myosin phosphorylation-dependent and independent contractions in bovine tracheal smooth muscle.
    Tajimi M; Hori M; Mitsui M; Ozaki H; Karaki H
    J Smooth Muscle Res; 1995 Aug; 31(4):129-42. PubMed ID: 8589501
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The action of sevoflurane on vascular smooth muscle of isolated mesenteric resistance arteries (part 2): mechanisms of endothelium-independent vasorelaxation.
    Akata T; Izumi K; Nakashima M
    Anesthesiology; 2000 May; 92(5):1441-53. PubMed ID: 10781291
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Volatile anesthetics inhibit angiotensin II-induced vascular contraction by modulating myosin light chain phosphatase inhibiting protein, CPI-17 and regulatory subunit, MYPT1 phosphorylation.
    Qi F; Ogawa K; Tokinaga Y; Uematsu N; Minonishi T; Hatano Y
    Anesth Analg; 2009 Aug; 109(2):412-7. PubMed ID: 19608811
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Halothane and enflurane constrict canine mesenteric arteries by releasing Ca2+ from intracellular Ca2+ stores.
    Kakuyama M; Hatano Y; Nakamura K; Toda H; Terasako K; Nishiwada M; Mori K
    Anesthesiology; 1994 May; 80(5):1120-7. PubMed ID: 8017650
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of volatile anesthetics on acetylcholine-induced relaxation in the rabbit mesenteric resistance artery.
    Akata T; Nakashima M; Kodama K; Boyle WA; Takahashi S
    Anesthesiology; 1995 Jan; 82(1):188-204. PubMed ID: 7832300
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Role of intracellular Ca2+ pools in the effects of halothane and isoflurane on vascular smooth muscle contraction.
    Tsuchida H; Namba H; Seki S; Fujita S; Tanaka S; Namiki A
    Anesth Analg; 1994 Jun; 78(6):1067-76. PubMed ID: 8198260
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.