These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
269 related articles for article (PubMed ID: 12960552)
1. Mechanisms of direct inhibitory action of isoflurane on vascular smooth muscle of mesenteric resistance arteries. Akata T; Kanna T; Yoshino J; Takahashi S Anesthesiology; 2003 Sep; 99(3):666-77. PubMed ID: 12960552 [TBL] [Abstract][Full Text] [Related]
2. Mechanisms of direct inhibitory action of ketamine on vascular smooth muscle in mesenteric resistance arteries. Akata T; Izumi K; Nakashima M Anesthesiology; 2001 Aug; 95(2):452-62. PubMed ID: 11506120 [TBL] [Abstract][Full Text] [Related]
3. The action of sevoflurane on vascular smooth muscle of isolated mesenteric resistance arteries (part 2): mechanisms of endothelium-independent vasorelaxation. Akata T; Izumi K; Nakashima M Anesthesiology; 2000 May; 92(5):1441-53. PubMed ID: 10781291 [TBL] [Abstract][Full Text] [Related]
4. The mechanisms of the direct action of etomidate on vascular reactivity in rat mesenteric resistance arteries. Shirozu K; Akata T; Yoshino J; Setoguchi H; Morikawa K; Hoka S Anesth Analg; 2009 Feb; 108(2):496-507. PubMed ID: 19151278 [TBL] [Abstract][Full Text] [Related]
5. Volatile anesthetic actions on contractile proteins in membrane-permeabilized small mesenteric arteries. Akata T; Boyle WA Anesthesiology; 1995 Mar; 82(3):700-12. PubMed ID: 7879938 [TBL] [Abstract][Full Text] [Related]
6. Role of endothelium in the action of isoflurane on vascular smooth muscle of isolated mesenteric resistance arteries. Izumi K; Akata T; Takahashi S Anesthesiology; 2001 Oct; 95(4):990-8. PubMed ID: 11605943 [TBL] [Abstract][Full Text] [Related]
7. Multiple actions of halothane on contractile response to noradrenaline in isolated mesenteric resistance arteries. Yoshino J; Akata T; Izumi K; Takahashi S Naunyn Schmiedebergs Arch Pharmacol; 2005 Jun; 371(6):500-15. PubMed ID: 16012873 [TBL] [Abstract][Full Text] [Related]
8. Effect of volatile anesthetics with and without verapamil on intracellular activity in vascular smooth muscle. Namba H; Tsuchida H Anesthesiology; 1996 Jun; 84(6):1465-74. PubMed ID: 8669688 [TBL] [Abstract][Full Text] [Related]
9. The action of sevoflurane on vascular smooth muscle of isolated mesenteric resistance arteries (part 1): role of endothelium. Izumi K; Akata T; Takahashi S Anesthesiology; 2000 May; 92(5):1426-40. PubMed ID: 10781290 [TBL] [Abstract][Full Text] [Related]
10. Comparison of volatile anesthetic actions on intracellular calcium stores of vascular smooth muscle: investigation in isolated systemic resistance arteries. Akata T; Nakashima M; Izumi K Anesthesiology; 2001 May; 94(5):840-50. PubMed ID: 11388536 [TBL] [Abstract][Full Text] [Related]
11. Effect of propofol on norepinephrine-induced increases in [Ca2+]i and force in smooth muscle of the rabbit mesenteric resistance artery. Imura N; Shiraishi Y; Katsuya H; Itoh T Anesthesiology; 1998 Jun; 88(6):1566-78. PubMed ID: 9637651 [TBL] [Abstract][Full Text] [Related]
12. Effects of a newly synthesized K+ channel opener, Y-26763, on noradrenaline-induced Ca2+ mobilization in smooth muscle of the rabbit mesenteric artery. Itoh T; Ito S; Shafiq J; Suzuki H Br J Pharmacol; 1994 Jan; 111(1):165-72. PubMed ID: 8012692 [TBL] [Abstract][Full Text] [Related]
13. Effects of halothane and isoflurane on cytosolic calcium ion concentrations and contraction in the vascular smooth muscle of the rat aorta. Tsuchida H; Namba H; Yamakage M; Fujita S; Notsuki E; Namiki A Anesthesiology; 1993 Mar; 78(3):531-40. PubMed ID: 7681270 [TBL] [Abstract][Full Text] [Related]
14. Possible mechanism of the potent vasoconstrictor responses to ryanodine in dog cerebral arteries. Asano M; Kuwako M; Nomura Y; Suzuki Y; Shibuya M; Sugita K; Ito K Eur J Pharmacol; 1996 Sep; 311(1):53-60. PubMed ID: 8884236 [TBL] [Abstract][Full Text] [Related]
15. Role of intracellular Ca2+ pools in the effects of halothane and isoflurane on vascular smooth muscle contraction. Tsuchida H; Namba H; Seki S; Fujita S; Tanaka S; Namiki A Anesth Analg; 1994 Jun; 78(6):1067-76. PubMed ID: 8198260 [TBL] [Abstract][Full Text] [Related]
16. Possible mechanisms underlying the midazolam-induced relaxation of the noradrenaline-contraction in rabbit mesenteric resistance artery. Shiraishi Y; Ohashi M; Kanmura Y; Yamaguchi S; Yoshimura N; Itoh T Br J Pharmacol; 1997 Jul; 121(6):1155-63. PubMed ID: 9249252 [TBL] [Abstract][Full Text] [Related]
17. Effect of membrane hyperpolarization induced by a K+ channel opener on histamine-induced Ca2+ mobilization in rabbit arterial smooth muscle. Watanabe Y; Suzuki A; Suzuki H; Itoh T Br J Pharmacol; 1996 Mar; 117(6):1302-8. PubMed ID: 8882629 [TBL] [Abstract][Full Text] [Related]
18. Effects of isoflurane on receptor-operated Ca2+ channels in rat aortic smooth muscle. Hirata S; Enoki T; Kitamura R; Vinh VH; Nakamura K; Mori K Br J Anaesth; 1998 Oct; 81(4):578-83. PubMed ID: 9924235 [TBL] [Abstract][Full Text] [Related]
19. Dual actions of halothane on intracellular calcium stores of vascular smooth muscle. Akata T; Boyle W Anesthesiology; 1996 Mar; 84(3):580-95. PubMed ID: 8659787 [TBL] [Abstract][Full Text] [Related]
20. Inhibitory action of niflumic acid on noradrenaline- and 5-hydroxytryptamine-induced pressor responses in the isolated mesenteric vascular bed of the rat. Criddle DN; de Moura RS; Greenwood IA; Large WA Br J Pharmacol; 1997 Mar; 120(5):813-8. PubMed ID: 9138686 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]