These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 12961)

  • 41. High-resolution kinetic studies of the reassembly of the tetra-manganese cluster of photosynthetic water oxidation: proton equilibrium, cations, and electrostatics.
    Ananyev GM; Dismukes GC
    Biochemistry; 1996 Nov; 35(46):14608-17. PubMed ID: 8931559
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Manganese and calcium transport in mitochondria: implications for manganese toxicity.
    Gavin CE; Gunter KK; Gunter TE
    Neurotoxicology; 1999; 20(2-3):445-53. PubMed ID: 10385903
    [TBL] [Abstract][Full Text] [Related]  

  • 43. A cyanine dye tri-S-C7(5). Phosphate-dependent cationic uncoupler of oxidative phosphorylation in mitochondria.
    Terada H; Nagamune H
    Biochim Biophys Acta; 1983 Apr; 723(1):7-15. PubMed ID: 6830769
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Kinetic and magnetic resonance studies of the role of metal ions in the mechanism of Escherichia coli GDP-mannose mannosyl hydrolase, an unusual nudix enzyme.
    Legler PM; Lee HC; Peisach J; Mildvan AS
    Biochemistry; 2002 Apr; 41(14):4655-68. PubMed ID: 11926828
    [TBL] [Abstract][Full Text] [Related]  

  • 45. The use of electron paramagnetic resonance in studies of free and bound divalent cation: the measurement of membrane potentials in mitochondria.
    Gunter TE; Puskin JS
    Ann N Y Acad Sci; 1975 Dec; 264():112-23. PubMed ID: 4001
    [No Abstract]   [Full Text] [Related]  

  • 46. A re-evaluation of the role of matrix acidification in uncoupler-induced Ca2+ release from mitochondria.
    Vajda S; Mándi M; Konràd C; Kiss G; Ambrus A; Adam-Vizi V; Chinopoulos C
    FEBS J; 2009 May; 276(10):2713-24. PubMed ID: 19459934
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Remarkable affinity and selectivity for Cs+ and uranyl (UO22+) binding to the manganese site of the apo-water oxidation complex of photosystem II.
    Ananyev GM; Murphy A; Abe Y; Dismukes GC
    Biochemistry; 1999 Jun; 38(22):7200-9. PubMed ID: 10353831
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Different manganese binding sites in photosystem II probed by selective chemical modification of histidyl and carboxylic acid residues.
    Magnuson A; Andréasson LE
    Biochemistry; 1997 Mar; 36(11):3254-61. PubMed ID: 9116003
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Influence of the energetic state of rat liver mitochondria on the sensitivity of the phosphate carrier towards SH reagents.
    Le Quoc D; Le Quoc K; Gaudemer Y
    Biochim Biophys Acta; 1977 Oct; 462(1):131-40. PubMed ID: 911819
    [TBL] [Abstract][Full Text] [Related]  

  • 50. The reduction of diamide by rat liver mitochondria and the role of glutathione.
    Jocelyn PC
    Biochem J; 1978 Dec; 176(3):649-64. PubMed ID: 747642
    [TBL] [Abstract][Full Text] [Related]  

  • 51. H+ gradient in submitochondrial particles generated by an electroneutral H+/Mn2+ exchange.
    Dell'Antone P; Volpato O
    FEBS Lett; 1977 Sep; 81(2):243-8. PubMed ID: 21812
    [No Abstract]   [Full Text] [Related]  

  • 52. Pathway for uncoupler-induced calcium efflux in rat liver mitochondria: inhibition by ruthenium red.
    Bernardi P; Paradisi V; Pozzan T; Azzone GF
    Biochemistry; 1984 Apr; 23(8):1645-51. PubMed ID: 6202317
    [TBL] [Abstract][Full Text] [Related]  

  • 53. 31P-NMR and ESR studies of the oxidation states of manganese in Staphylococcus aureus.
    Ezra FS; Lucas DS; Russell AF
    Biochim Biophys Acta; 1984 Feb; 803(1-2):90-4. PubMed ID: 6320910
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Dual divalent cation requirement for activation of pyruvate kinase; essential roles of both enzyme- and nucleotide-bound metal ions.
    Gupta RK; Oesterling RM
    Biochemistry; 1976 Jun; 15(13):2881-7. PubMed ID: 7293
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Adenine nucleotide transport in hepatoma mitochondria. Characterization of factors influencing the kinetics of ADP and ATP uptake.
    Chan SH; Barbour RL
    Biochim Biophys Acta; 1983 Apr; 723(1):104-13. PubMed ID: 6830767
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Phosphate and calcium uptake by mitochondria and by perfused rat liver induced by the synergistic action of glucagon and vasopressin.
    Bygrave FL; Lenton L; Altin JG; Setchell BA; Karjalainen A
    Biochem J; 1990 Apr; 267(1):69-73. PubMed ID: 2327989
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Identification of a membrane protein involved in mitochondrial phosphate transport.
    Hadvary P; Kadenbach B
    Eur J Biochem; 1976 Aug; 67(2):573-81. PubMed ID: 964259
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Interaction of bacteriophage lambda protein phosphatase with Mn(II): evidence for the formation of a [Mn(II)]2 cluster.
    Rusnak F; Yu L; Todorovic S; Mertz P
    Biochemistry; 1999 May; 38(21):6943-52. PubMed ID: 10346916
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Ba2+ ions inhibit the release of Ca2+ ions from rat liver mitochondria.
    Lukács GL; Fonyó A
    Biochim Biophys Acta; 1985 Sep; 809(2):160-6. PubMed ID: 2412581
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Determination of the oxidation states of manganese in brain, liver, and heart mitochondria.
    Gunter TE; Miller LM; Gavin CE; Eliseev R; Salter J; Buntinas L; Alexandrov A; Hammond S; Gunter KK
    J Neurochem; 2004 Jan; 88(2):266-80. PubMed ID: 14690515
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.