BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

262 related articles for article (PubMed ID: 12962316)

  • 1. Reelin-expressing neurons in the postnatal and adult human hippocampal formation.
    Abraham H; Meyer G
    Hippocampus; 2003; 13(6):715-27. PubMed ID: 12962316
    [TBL] [Abstract][Full Text] [Related]  

  • 2. p73 and Reelin in Cajal-Retzius cells of the developing human hippocampal formation.
    Abraham H; Pérez-García CG; Meyer G
    Cereb Cortex; 2004 May; 14(5):484-95. PubMed ID: 15054064
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Impaired reelin processing and secretion by Cajal-Retzius cells contributes to granule cell dispersion in a mouse model of temporal lobe epilepsy.
    Duveau V; Madhusudan A; Caleo M; Knuesel I; Fritschy JM
    Hippocampus; 2011 Sep; 21(9):935-44. PubMed ID: 20865728
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A novel population of calretinin-positive neurons comprises reelin-positive Cajal-Retzius cells in the hippocampal formation of the adult domestic pig.
    Abrahám H; Tóth Z; Seress L
    Hippocampus; 2004; 14(3):385-401. PubMed ID: 15132437
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Expression of calretinin in diverse neuronal populations during development of rat hippocampus.
    Jiang M; Swann JW
    Neuroscience; 1997 Dec; 81(4):1137-54. PubMed ID: 9330374
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Novel calretinin and reelin expressing neuronal population includes Cajal-Retzius-type cells in the neocortex of adult pigs.
    Abrahám H; Tóth Z; Bari F; Domoki F; Seress L
    Neuroscience; 2005; 136(1):217-30. PubMed ID: 16181738
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cajal-Retzius cells in the mouse: transcription factors, neurotransmitters, and birthdays suggest a pallial origin.
    Hevner RF; Neogi T; Englund C; Daza RA; Fink A
    Brain Res Dev Brain Res; 2003 Mar; 141(1-2):39-53. PubMed ID: 12644247
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Expression of p73 and Reelin in the developing human cortex.
    Meyer G; Perez-Garcia CG; Abraham H; Caput D
    J Neurosci; 2002 Jun; 22(12):4973-86. PubMed ID: 12077194
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Increased reelin promoter methylation is associated with granule cell dispersion in human temporal lobe epilepsy.
    Kobow K; Jeske I; Hildebrandt M; Hauke J; Hahnen E; Buslei R; Buchfelder M; Weigel D; Stefan H; Kasper B; Pauli E; Blümcke I
    J Neuropathol Exp Neurol; 2009 Apr; 68(4):356-64. PubMed ID: 19287316
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparative aspects of p73 and Reelin expression in Cajal-Retzius cells and the cortical hem in lizard, mouse and human.
    Cabrera-Socorro A; Hernandez-Acosta NC; Gonzalez-Gomez M; Meyer G
    Brain Res; 2007 Feb; 1132(1):59-70. PubMed ID: 17189620
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Building a human cortex: the evolutionary differentiation of Cajal-Retzius cells and the cortical hem.
    Meyer G
    J Anat; 2010 Oct; 217(4):334-43. PubMed ID: 20626498
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Expression of calcium-binding proteins in layer 1 reelin-immunoreactive cells during rat and mouse neocortical development.
    Martinez-Galan JR; Moncho-Bogani J; Caminos E
    J Histochem Cytochem; 2014 Jan; 62(1):60-9. PubMed ID: 24134921
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Regional and cellular patterns of reelin mRNA expression in the forebrain of the developing and adult mouse.
    Alcántara S; Ruiz M; D'Arcangelo G; Ezan F; de Lecea L; Curran T; Sotelo C; Soriano E
    J Neurosci; 1998 Oct; 18(19):7779-99. PubMed ID: 9742148
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reelin immunoreactivity in dissociated cultures of the postnatal hippocampus.
    Scotti AL; Herrmann G
    Brain Res; 2002 Jan; 924(2):209-18. PubMed ID: 11750906
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hippocampal Cajal-Retzius cells project to the entorhinal cortex: retrograde tracing and intracellular labelling studies.
    Ceranik K; Deng J; Heimrich B; Lübke J; Zhao S; Förster E; Frotscher M
    Eur J Neurosci; 1999 Dec; 11(12):4278-90. PubMed ID: 10594654
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Selective Inactivation of Reelin in Inhibitory Interneurons Leads to Subtle Changes in the Dentate Gyrus But Leaves Cortical Layering and Behavior Unaffected.
    Pahle J; Muhia M; Wagener RJ; Tippmann A; Bock HH; Graw J; Herz J; Staiger JF; Drakew A; Kneussel M; Rune GM; Frotscher M; Brunne B
    Cereb Cortex; 2020 Mar; 30(3):1688-1707. PubMed ID: 31667489
    [TBL] [Abstract][Full Text] [Related]  

  • 17. No effect of sustained systemic growth retardation on the distribution of Reelin-expressing interneurons in the neuron-producing hippocampal dentate gyrus in rats.
    Ohishi T; Wang L; Ogawa B; Fujisawa K; Taniai E; Hayashi H; Mitsumori K; Shibutani M
    Reprod Toxicol; 2010 Dec; 30(4):591-9. PubMed ID: 20920577
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ontogeny of calbindin immunoreactivity in the human hippocampal formation with a special emphasis on granule cells of the dentate gyrus.
    Abrahám H; Veszprémi B; Kravják A; Kovács K; Gömöri E; Seress L
    Int J Dev Neurosci; 2009 Apr; 27(2):115-27. PubMed ID: 19150647
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Glutamate-like immunoreactivity and fate of Cajal-Retzius cells in the murine cortex as identified with calretinin antibody.
    del Río JA; Martínez A; Fonseca M; Auladell C; Soriano E
    Cereb Cortex; 1995; 5(1):13-21. PubMed ID: 7719127
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Origin of the cortical layer I in rodents.
    Jiménez D; Rivera R; López-Mascaraque L; De Carlos JA
    Dev Neurosci; 2003; 25(2-4):105-15. PubMed ID: 12966209
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.