BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 12962326)

  • 1. Environmental influences on bovine kappa-casein: reduction and conversion to fibrillar (amyloid) structures.
    Farrell HM; Cooke PH; Wickham ED; Piotrowski EG; Hoagland PD
    J Protein Chem; 2003 Apr; 22(3):259-73. PubMed ID: 12962326
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Kinetics of fibril formation of bovine kappa-casein indicate a conformational rearrangement as a critical step in the process.
    Leonil J; Henry G; Jouanneau D; Delage MM; Forge V; Putaux JL
    J Mol Biol; 2008 Sep; 381(5):1267-80. PubMed ID: 18616951
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The Effect of Milk Constituents and Crowding Agents on Amyloid Fibril Formation by κ-Casein.
    Liu J; Dehle FC; Liu Y; Bahraminejad E; Ecroyd H; Thorn DC; Carver JA
    J Agric Food Chem; 2016 Feb; 64(6):1335-43. PubMed ID: 26807595
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The dissociated form of kappa-casein is the precursor to its amyloid fibril formation.
    Ecroyd H; Thorn DC; Liu Y; Carver JA
    Biochem J; 2010 Jul; 429(2):251-60. PubMed ID: 20441567
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reconstituted micelle formation using reduced, carboxymethylated bovine kappa-casein and human beta-casein.
    Sood SM; Lekic T; Jhawar H; Farrell HM; Slattery CW
    Protein J; 2006 Jul; 25(5):352-60. PubMed ID: 16947075
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Amyloid fibril formation by bovine milk kappa-casein and its inhibition by the molecular chaperones alphaS- and beta-casein.
    Thorn DC; Meehan S; Sunde M; Rekas A; Gras SL; MacPhee CE; Dobson CM; Wilson MR; Carver JA
    Biochemistry; 2005 Dec; 44(51):17027-36. PubMed ID: 16363816
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Amyloid fibril formation by bovine milk alpha s2-casein occurs under physiological conditions yet is prevented by its natural counterpart, alpha s1-casein.
    Thorn DC; Ecroyd H; Sunde M; Poon S; Carver JA
    Biochemistry; 2008 Mar; 47(12):3926-36. PubMed ID: 18302322
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Secondary structural studies of bovine caseins: structure and temperature dependence of beta-casein phosphopeptide (1-25) as analyzed by circular dichroism, FTIR spectroscopy, and analytical ultracentrifugation.
    Farrell HM; Qi PX; Wickham ED; Unruh JJ
    J Protein Chem; 2002 Jul; 21(5):307-21. PubMed ID: 12206505
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Environmental effects on disulfide bonding patterns of bovine kappa-casein.
    Groves ML; Wickham ED; Farrell HM
    J Protein Chem; 1998 Feb; 17(2):73-84. PubMed ID: 9535269
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterization of the particles of purified kappa-casein: trypsin as a probe of surface-accessible residues.
    Farrell HM; Wickham ED; Dower HJ; Piotrowski EG; Hoagland PD; Cooke PH; Groves ML
    J Protein Chem; 1999 Aug; 18(6):637-52. PubMed ID: 10609639
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Thermal and alkaline denaturation of bovine beta-casein.
    Qi PX; Wickham ED; Farrell HM
    Protein J; 2004 Aug; 23(6):389-402. PubMed ID: 15517986
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Particle sizes of purified kappa-casein: metal effect and correspondence with predicted three-dimensional molecular models.
    Farrell HM; Kumosinski TF; Cooke PH; King G; Hoagland PD; Wickham ED; Dower HJ; Groves ML
    J Protein Chem; 1996 Jul; 15(5):435-45. PubMed ID: 8895088
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Native disulphide-linked dimers facilitate amyloid fibril formation by bovine milk α
    Thorn DC; Bahraminejad E; Grosas AB; Koudelka T; Hoffmann P; Mata JP; Devlin GL; Sunde M; Ecroyd H; Holt C; Carver JA
    Biophys Chem; 2021 Mar; 270():106530. PubMed ID: 33545456
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Aggregation and structural changes of α(S1)-, β- and κ-caseins induced by homocysteinylation.
    Stroylova YY; Zimny J; Yousefi R; Chobert JM; Jakubowski H; Muronetz VI; Haertlé T
    Biochim Biophys Acta; 2011 Oct; 1814(10):1234-45. PubMed ID: 21689790
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reexamination of the polymeric distributions of kappa-casein isolated from bovine milk.
    Groves ML; Dower HJ; Farrell HM
    J Protein Chem; 1992 Feb; 11(1):21-8. PubMed ID: 1515031
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Invited review: Caseins and the casein micelle: their biological functions, structures, and behavior in foods.
    Holt C; Carver JA; Ecroyd H; Thorn DC
    J Dairy Sci; 2013 Oct; 96(10):6127-46. PubMed ID: 23958008
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dissociation from the oligomeric state is the rate-limiting step in fibril formation by kappa-casein.
    Ecroyd H; Koudelka T; Thorn DC; Williams DM; Devlin G; Hoffmann P; Carver JA
    J Biol Chem; 2008 Apr; 283(14):9012-22. PubMed ID: 18245081
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Methionine oxidation enhances κ-casein amyloid fibril formation.
    Koudelka T; Dehle FC; Musgrave IF; Hoffmann P; Carver JA
    J Agric Food Chem; 2012 Apr; 60(16):4144-55. PubMed ID: 22443319
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Amyloid fibrils from readily available sources: milk casein and lens crystallin proteins.
    Ecroyd H; Garvey M; Thorn DC; Gerrard JA; Carver JA
    Methods Mol Biol; 2013; 996():103-17. PubMed ID: 23504420
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evidence for fibril-like structure in bovine casein micelles.
    Lencki RW
    J Dairy Sci; 2007 Jan; 90(1):75-89. PubMed ID: 17183077
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.