These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
190 related articles for article (PubMed ID: 12962478)
1. Human recombinant resistin protein displays a tendency to aggregate by forming intermolecular disulfide linkages. Aruna B; Ghosh S; Singh AK; Mande SC; Srinivas V; Chauhan R; Ehtesham NZ Biochemistry; 2003 Sep; 42(36):10554-9. PubMed ID: 12962478 [TBL] [Abstract][Full Text] [Related]
2. Disulfide-dependent multimeric assembly of resistin family hormones. Patel SD; Rajala MW; Rossetti L; Scherer PE; Shapiro L Science; 2004 May; 304(5674):1154-8. PubMed ID: 15155948 [TBL] [Abstract][Full Text] [Related]
3. Bacterial expression, characterization, and disulfide bond determination of soluble human NTPDase6 (CD39L2) nucleotidase: implications for structure and function. Ivanenkov VV; Murphy-Piedmonte DM; Kirley TL Biochemistry; 2003 Oct; 42(40):11726-35. PubMed ID: 14529283 [TBL] [Abstract][Full Text] [Related]
4. Dimerization of human recombinant resistin involves covalent and noncovalent interactions. Raghu P; Ghosh S; Soundarya K; Haseeb A; Aruna B; Ehtesham NZ Biochem Biophys Res Commun; 2004 Jan; 313(3):642-6. PubMed ID: 14697240 [TBL] [Abstract][Full Text] [Related]
5. Folding and structural characterization of highly disulfide-bonded beetle antifreeze protein produced in bacteria. Liou YC; Daley ME; Graham LA; Kay CM; Walker VK; Sykes BD; Davies PL Protein Expr Purif; 2000 Jun; 19(1):148-57. PubMed ID: 10833402 [TBL] [Abstract][Full Text] [Related]
6. Biophysical analyses of human resistin: oligomer formation suggests novel biological function. Aruna B; Islam A; Ghosh S; Singh AK; Vijayalakshmi M; Ahmad F; Ehtesham NZ Biochemistry; 2008 Nov; 47(47):12457-66. PubMed ID: 18975914 [TBL] [Abstract][Full Text] [Related]
7. Determination of disulfide bond patterns in laminin beta1 chain N-terminal domains by nano-high-performance liquid chromatography/matrix-assisted laser desorption/ionization time-of-flight/time-of-flight mass spectrometry. Kalkhof S; Haehn S; Ihling C; Paulsson M; Smyth N; Sinz A Rapid Commun Mass Spectrom; 2008 Jun; 22(12):1933-40. PubMed ID: 18491288 [TBL] [Abstract][Full Text] [Related]
8. Production and characterization of bioactive recombinant resistin in Escherichia coli. Juan CC; Kan LS; Huang CC; Chen SS; Ho LT; Au LC J Biotechnol; 2003 Jun; 103(2):113-7. PubMed ID: 12814870 [TBL] [Abstract][Full Text] [Related]
9. Tumor suppressor p16INK4A: structural characterization of wild-type and mutant proteins by NMR and circular dichroism. Tevelev A; Byeon IJ; Selby T; Ericson K; Kim HJ; Kraynov V; Tsai MD Biochemistry; 1996 Jul; 35(29):9475-87. PubMed ID: 8755727 [TBL] [Abstract][Full Text] [Related]
11. Development of disulfide peptide mapping and determination of disulfide structure of recombinant human osteoprotegerin chimera produced in Escherichia coli. Merewether LA; Le J; Jones MD; Lee R; Shimamoto G; Lu HS Arch Biochem Biophys; 2000 Mar; 375(1):101-10. PubMed ID: 10683254 [TBL] [Abstract][Full Text] [Related]
12. Determination of tumor necrosis factor binding protein disulfide structure: deviation of the fourth domain structure from the TNFR/NGFR family cysteine-rich region signature. Jones MD; Hunt J; Liu JL; Patterson SD; Kohno T; Lu HS Biochemistry; 1997 Dec; 36(48):14914-23. PubMed ID: 9398215 [TBL] [Abstract][Full Text] [Related]
13. Identification and assignment of three disulfide bonds in mammalian leukocyte cell-derived chemotaxin 2 by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Okumura A; Suzuki T; Dohmae N; Okabe T; Hashimoto Y; Nakazato K; Ohno H; Miyazaki Y; Yamagoe S Biosci Trends; 2009 Aug; 3(4):139-43. PubMed ID: 20103838 [TBL] [Abstract][Full Text] [Related]
14. Identification and localization of unpaired cysteine residues in monoclonal antibodies by fluorescence labeling and mass spectrometry. Chumsae C; Gaza-Bulseco G; Liu H Anal Chem; 2009 Aug; 81(15):6449-57. PubMed ID: 19572546 [TBL] [Abstract][Full Text] [Related]
16. Oxidative refolding of recombinant prochymosin. Wei C; Tang B; Zhang Y; Yang K Biochem J; 1999 May; 340 ( Pt 1)(Pt 1):345-51. PubMed ID: 10229691 [TBL] [Abstract][Full Text] [Related]
17. Site-specific PEGylation of protein disulfide bonds using a three-carbon bridge. Balan S; Choi JW; Godwin A; Teo I; Laborde CM; Heidelberger S; Zloh M; Shaunak S; Brocchini S Bioconjug Chem; 2007; 18(1):61-76. PubMed ID: 17226958 [TBL] [Abstract][Full Text] [Related]
18. Elucidation of the disulfide bridge pattern of the recombinant human growth and differentiation factor 5 dimer and the interchain Cys/Ala mutant monomer. Trachsel C; Kämpfer U; Bechtold R; Schaller J; Schürch S Anal Biochem; 2009 Jul; 390(2):103-8. PubMed ID: 19393216 [TBL] [Abstract][Full Text] [Related]
19. Structural and functional significance of disulfide bonds in saxatilin, a 7.7 kDa disintegrin. Hong SY; Sohn YD; Chung KH; Kim DS Biochem Biophys Res Commun; 2002 Apr; 293(1):530-6. PubMed ID: 12054633 [TBL] [Abstract][Full Text] [Related]
20. Glial cell line-derived neurotrophic factor: selective reduction of the intermolecular disulfide linkage and characterization of its disulfide structure. Haniu M; Hui J; Young Y; Le J; Katta V; Lee R; Shimamoto G; Rohde MF Biochemistry; 1996 Dec; 35(51):16799-805. PubMed ID: 8988018 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]