These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

245 related articles for article (PubMed ID: 12962490)

  • 21. Cu(II)-binding properties of a cytochrome c with a synthetic metal-binding site: His-X3-His in an alpha-helix.
    Todd RJ; Van Dam ME; Casimiro D; Haymore BL; Arnold FH
    Proteins; 1991; 10(2):156-61. PubMed ID: 1654548
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The role of a conserved water molecule in the redox-dependent thermal stability of iso-1-cytochrome c.
    Lett CM; Berghuis AM; Frey HE; Lepock JR; Guillemette JG
    J Biol Chem; 1996 Nov; 271(46):29088-93. PubMed ID: 8910563
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Degradation of yeast cytochromes c dependent and independent on its physiological partners.
    Pearce DA; Sherman F
    Arch Biochem Biophys; 1998 Apr; 352(1):85-96. PubMed ID: 9521820
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Conformational properties of the iso-1-cytochrome C denatured state: dependence on guanidine hydrochloride concentration.
    Wandschneider E; Bowler BE
    J Mol Biol; 2004 May; 339(1):185-97. PubMed ID: 15123430
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Native tertiary structure in an A-state.
    Marmorino JL; Lehti M; Pielak GJ
    J Mol Biol; 1998 Jan; 275(2):379-88. PubMed ID: 9466916
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Control of the stability of Hydrogenobacter thermophilus cytochrome C(552) through alteration of the basicity of the N-terminal amino group of the polypeptide chain.
    Tai H; Munegumi T; Yamamoto Y
    Inorg Chem; 2010 Dec; 49(23):10840-6. PubMed ID: 21058669
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Stabilizing amino acid replacements at position 52 in yeast iso-1-cytochrome c: in vivo and in vitro effects.
    Linske-O'Connell LI; Sherman F; McLendon G
    Biochemistry; 1995 May; 34(21):7094-102. PubMed ID: 7766619
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Thermal stability of hydrophobic heme pocket variants of oxidized cytochrome c.
    Liggins JR; Lo TP; Brayer GD; Nall BT
    Protein Sci; 1999 Dec; 8(12):2645-54. PubMed ID: 10631980
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The polarity of tyrosine 67 in yeast iso-1-cytochrome c monitored by second derivative spectroscopy.
    Schroeder HR; McOdimba FA; Guillemette JG; Kornblatt JA
    Biochem Cell Biol; 1997; 75(3):191-7. PubMed ID: 9404638
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Structure, function, and temperature sensitivity of directed, random mutants at proline 76 and glycine 77 in omega-loop D of yeast iso-1-cytochrome c.
    Fetrow JS; Spitzer JS; Gilden BM; Mellender SJ; Begley TJ; Haas BJ; Boose TL
    Biochemistry; 1998 Feb; 37(8):2477-87. PubMed ID: 9485396
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Refolding rate of stability-enhanced cytochrome c is independent of thermodynamic driving force.
    McGee WA; Nall BT
    Protein Sci; 1998 May; 7(5):1071-82. PubMed ID: 9605312
    [TBL] [Abstract][Full Text] [Related]  

  • 32. pH dependence of formation of a partially unfolded state of a Lys 73 --> His variant of iso-1-cytochrome c: implications for the alkaline conformational transition of cytochrome c.
    Nelson CJ; Bowler BE
    Biochemistry; 2000 Nov; 39(44):13584-94. PubMed ID: 11063596
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Proton-mediated dynamics of the alkaline conformational transition of yeast iso-1-cytochrome c.
    Martinez RE; Bowler BE
    J Am Chem Soc; 2004 Jun; 126(21):6751-8. PubMed ID: 15161303
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Dissecting histidine interactions of ribonuclease T1 with asparagine and glutamine replacements: analysis of double mutant cycles at one position.
    De Vos S; Doumen J; Langhorst U; Steyaert J
    J Mol Biol; 1998 Jan; 275(4):651-61. PubMed ID: 9466938
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Hydrogen exchange behavior of [U-15N]-labeled oxidized and reduced iso-1-cytochrome c.
    Baxter SM; Fetrow JS
    Biochemistry; 1999 Apr; 38(14):4493-503. PubMed ID: 10194371
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Probing weakly polar interactions in cytochrome c.
    Auld DS; Young GB; Saunders AJ; Doyle DF; Betz SF; Pielak GJ
    Protein Sci; 1993 Dec; 2(12):2187-97. PubMed ID: 8298464
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Evaluation of direct and cooperative contributions towards the strength of buried hydrogen bonds and salt bridges.
    Albeck S; Unger R; Schreiber G
    J Mol Biol; 2000 May; 298(3):503-20. PubMed ID: 10772866
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Thermodynamics of the equilibrium unfolding of oxidized and reduced Saccharomyces cerevisiae iso-1-cytochromes c.
    Komar-Panicucci S; Weis D; Bakker G; Qiao T; Sherman F; McLendon G
    Biochemistry; 1994 Aug; 33(34):10556-60. PubMed ID: 8068696
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Cytochrome c folding traps are not due solely to histidine-heme ligation: direct demonstration of a role for N-terminal amino group-heme ligation.
    Hammack B; Godbole S; Bowler BE
    J Mol Biol; 1998 Feb; 275(5):719-24. PubMed ID: 9480763
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Competition between reversible aggregation and loop formation in denatured iso-1-cytochrome c.
    Tzul FO; Kurchan E; Roder H; Bowler BE
    Biochemistry; 2009 Jan; 48(2):481-91. PubMed ID: 19113858
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.