BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

278 related articles for article (PubMed ID: 12963092)

  • 1. Physiological, anatomical and genetic identification of CPG neurons in the developing mammalian spinal cord.
    Kiehn O; Butt SJ
    Prog Neurobiol; 2003 Jul; 70(4):347-61. PubMed ID: 12963092
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Role of EphA4 and EphrinB3 in local neuronal circuits that control walking.
    Kullander K; Butt SJ; Lebret JM; Lundfald L; Restrepo CE; Rydström A; Klein R; Kiehn O
    Science; 2003 Mar; 299(5614):1889-92. PubMed ID: 12649481
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Locomotor circuits in the mammalian spinal cord.
    Kiehn O
    Annu Rev Neurosci; 2006; 29():279-306. PubMed ID: 16776587
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Firing properties of identified interneuron populations in the mammalian hindlimb central pattern generator.
    Butt SJ; Harris-Warrick RM; Kiehn O
    J Neurosci; 2002 Nov; 22(22):9961-71. PubMed ID: 12427853
    [TBL] [Abstract][Full Text] [Related]  

  • 5. EphA4-dependent axon retraction and midline localization of Ephrin-B3 are disrupted in the spinal cord of mice lacking mDia1 and mDia3 in combination.
    Toyoda Y; Shinohara R; Thumkeo D; Kamijo H; Nishimaru H; Hioki H; Kaneko T; Ishizaki T; Furuyashiki T; Narumiya S
    Genes Cells; 2013 Oct; 18(10):873-85. PubMed ID: 23890216
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Functional organization of V2a-related locomotor circuits in the rodent spinal cord.
    Dougherty KJ; Kiehn O
    Ann N Y Acad Sci; 2010 Jun; 1198():85-93. PubMed ID: 20536923
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterization of Dmrt3-Derived Neurons Suggest a Role within Locomotor Circuits.
    Perry S; Larhammar M; Vieillard J; Nagaraja C; Hilscher MM; Tafreshiha A; Rofo F; Caixeta FV; Kullander K
    J Neurosci; 2019 Mar; 39(10):1771-1782. PubMed ID: 30578339
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Excitatory components of the mammalian locomotor CPG.
    Kiehn O; Quinlan KA; Restrepo CE; Lundfald L; Borgius L; Talpalar AE; Endo T
    Brain Res Rev; 2008 Jan; 57(1):56-63. PubMed ID: 17988744
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bimodal Respiratory-Locomotor Neurons in the Neonatal Rat Spinal Cord.
    Le Gal JP; Juvin L; Cardoit L; Morin D
    J Neurosci; 2016 Jan; 36(3):926-37. PubMed ID: 26791221
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mapping the Dynamic Recruitment of Spinal Neurons during Fictive Locomotion.
    Rancic V; Ballanyi K; Gosgnach S
    J Neurosci; 2020 Dec; 40(50):9692-9700. PubMed ID: 33188068
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Organization of left-right coordination in the mammalian locomotor network.
    Butt SJ; Lebret JM; Kiehn O
    Brain Res Brain Res Rev; 2002 Oct; 40(1-3):107-17. PubMed ID: 12589910
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Neuromodulation of Spinal Locomotor Networks in Rodents.
    Diaz-Ríos M; Guertin PA; Rivera-Oliver M
    Curr Pharm Des; 2017; 23(12):1741-1752. PubMed ID: 28120724
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Organization of left-right coordination of neuronal activity in the mammalian spinal cord: Insights from computational modelling.
    Shevtsova NA; Talpalar AE; Markin SN; Harris-Warrick RM; Kiehn O; Rybak IA
    J Physiol; 2015 Jun; 593(11):2403-26. PubMed ID: 25820677
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Anatomical and electrophysiological characterization of a population of dI6 interneurons in the neonatal mouse spinal cord.
    Griener A; Zhang W; Kao H; Haque F; Gosgnach S
    Neuroscience; 2017 Oct; 362():47-59. PubMed ID: 28844009
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Recent Insights into the Rhythmogenic Core of the Locomotor CPG.
    Rancic V; Gosgnach S
    Int J Mol Sci; 2021 Jan; 22(3):. PubMed ID: 33573259
    [TBL] [Abstract][Full Text] [Related]  

  • 16.
    Haque F; Rancic V; Zhang W; Clugston R; Ballanyi K; Gosgnach S
    J Neurosci; 2018 Jun; 38(25):5666-5676. PubMed ID: 29789381
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The role of genetically-defined interneurons in generating the mammalian locomotor rhythm.
    Gosgnach S
    Integr Comp Biol; 2011 Dec; 51(6):903-12. PubMed ID: 21576118
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Diversity of molecularly defined spinal interneurons engaged in mammalian locomotor pattern generation.
    Ziskind-Conhaim L; Hochman S
    J Neurophysiol; 2017 Dec; 118(6):2956-2974. PubMed ID: 28855288
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Projection patterns of commissural interneurons in the lumbar spinal cord of the neonatal rat.
    Stokke MF; Nissen UV; Glover JC; Kiehn O
    J Comp Neurol; 2002 May; 446(4):349-59. PubMed ID: 11954034
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The sacral networks and neural pathways used to elicit lumbar motor rhythm in the rodent spinal cord.
    Cherniak M; Etlin A; Strauss I; Anglister L; Lev-Tov A
    Front Neural Circuits; 2014; 8():143. PubMed ID: 25520624
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.